Skip to content

Commit 8b9b3c3

Browse files
Merge pull request #264518 from HeidiSteen/heidist-proto
[azure search] prototype TOC concepts node
2 parents f7ce45e + 7f0e9e5 commit 8b9b3c3

11 files changed

+176
-166
lines changed

articles/search/TOC.yml

Lines changed: 135 additions & 130 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
- name: Overview
44
expanded: true
55
items:
6-
- name: What's AI Search?
6+
- name: What's Azure AI Search?
77
href: search-what-is-azure-search.md
88
- name: New in Search
99
href: whats-new.md
@@ -13,11 +13,11 @@
1313
href: search-faq-frequently-asked-questions.yml
1414
- name: Quickstarts
1515
items:
16-
- name: Vector search
16+
- name: Vector store
1717
href: search-get-started-vector.md
1818
- name: Full text search
1919
href: search-get-started-text.md
20-
- name: Semantic ranking
20+
- name: Semantic reranking
2121
href: search-get-started-semantic.md
2222
- name: Retrieval Augmented Generation (RAG)
2323
href: search-get-started-retrieval-augmented-generation.md
@@ -127,7 +127,27 @@
127127
href: samples-rest.md
128128
- name: Concepts
129129
items:
130-
- name: Retrieval (Search)
130+
- name: Storage (indexes)
131+
items:
132+
- name: Search index
133+
href: search-what-is-an-index.md
134+
- name: Vector store
135+
href: vector-search-overview.md
136+
- name: Knowledge store
137+
href: knowledge-store-concept-intro.md
138+
- name: Data import strategies
139+
href: search-what-is-data-import.md
140+
- name: Enrichment (skills)
141+
items:
142+
- name: Enrichment overview
143+
href: cognitive-search-concept-intro.md
144+
- name: Enrichment cache
145+
href: cognitive-search-incremental-indexing-conceptual.md
146+
- name: Skillsets
147+
href: cognitive-search-working-with-skillsets.md
148+
- name: Integrated vectorization (preview)
149+
href: vector-search-integrated-vectorization.md
150+
- name: Retrieval (queries)
131151
items:
132152
- name: Full-text search
133153
href: search-lucene-query-architecture.md
@@ -141,44 +161,14 @@
141161
href: search-query-overview.md
142162
- name: Relevance
143163
items:
164+
- name: Semantic ranking
165+
href: semantic-search-overview.md
144166
- name: Scoring in keyword queries (BM25)
145167
href: index-similarity-and-scoring.md
146168
- name: Scoring in vector queries
147169
href: vector-search-ranking.md
148170
- name: Scoring in hybrid queries (RRF)
149171
href: hybrid-search-ranking.md
150-
- name: Semantic ranking
151-
href: semantic-search-overview.md
152-
- name: Indexing
153-
items:
154-
- name: Search indexes
155-
href: search-what-is-an-index.md
156-
- name: Import
157-
href: search-what-is-data-import.md
158-
- name: Import Data wizard
159-
href: search-import-data-portal.md
160-
- name: Analyzers
161-
href: search-analyzers.md
162-
- name: Indexers
163-
href: search-indexer-overview.md
164-
- name: Enrichment
165-
items:
166-
- name: Enrichment overview
167-
href: cognitive-search-concept-intro.md
168-
- name: Enrichment cache
169-
href: cognitive-search-incremental-indexing-conceptual.md
170-
- name: Skillsets
171-
href: cognitive-search-working-with-skillsets.md
172-
- name: Integrated vectorization (preview)
173-
href: vector-search-integrated-vectorization.md
174-
- name: Debug sessions
175-
href: cognitive-search-debug-session.md
176-
- name: Knowledge store
177-
href: knowledge-store-concept-intro.md
178-
- name: Knowledge store projections
179-
href: knowledge-store-projection-overview.md
180-
- name: Index projections
181-
href: index-projections-concept-intro.md
182172
- name: Security
183173
items:
184174
- name: Security overview
@@ -228,7 +218,7 @@
228218
href: search-dotnet-mgmt-sdk-migration.md
229219
- name: Upgrade the REST API
230220
href: search-api-migration.md
231-
- name: Indexes
221+
- name: Search indexes
232222
items:
233223
- name: Create a search index
234224
href: search-how-to-create-search-index.md
@@ -248,31 +238,50 @@
248238
href: search-howto-complex-data-types.md
249239
- name: Model relational data
250240
href: index-sql-relational-data.md
241+
- name: Analyzers
242+
items:
243+
- name: Analyzers overview
244+
href: search-analyzers.md
245+
- name: Add a language analyzer
246+
href: index-add-language-analyzers.md
247+
- name: Add a custom analyzer
248+
href: index-add-custom-analyzers.md
249+
- name: Synonyms
250+
items:
251+
- name: Add synonyms
252+
href: search-synonyms.md
253+
- name: Synonyms C# example
254+
href: search-synonyms-tutorial-sdk.md
251255
- name: Vector stores
252256
items:
253-
- name: Create a vector index
257+
- name: Create a vector store
254258
href: vector-search-how-to-create-index.md
255259
- name: Configure a vectorizer (preview)
256260
href: vector-search-how-to-configure-vectorizer.md
257261
- name: Chunk documents
258262
href: vector-search-how-to-chunk-documents.md
259263
- name: Generate embeddings
260264
href: vector-search-how-to-generate-embeddings.md
261-
262-
- name: Analyzers
263-
items:
264-
- name: Add a language analyzer
265-
href: index-add-language-analyzers.md
266-
- name: Add a custom analyzer
267-
href: index-add-custom-analyzers.md
268-
- name: Synonyms
265+
- name: Knowledge stores
269266
items:
270-
- name: Add synonyms
271-
href: search-synonyms.md
272-
- name: Synonyms C# example
273-
href: search-synonyms-tutorial-sdk.md
274-
- name: Indexers
267+
- name: Knowledge store overview
268+
href: knowledge-store-concept-intro.md
269+
- name: Knowledge store projections overview
270+
href: knowledge-store-projection-overview.md
271+
- name: Create using REST
272+
href: knowledge-store-create-rest.md
273+
- name: Shape data
274+
href: knowledge-store-projection-shape.md
275+
- name: Define projections
276+
href: knowledge-store-projections-examples.md
277+
- name: Projection example
278+
href: knowledge-store-projection-example-long.md
279+
- name: Connect with Power BI
280+
href: knowledge-store-connect-power-bi.md
281+
- name: Indexers and skills
275282
items:
283+
- name: Indexer overview
284+
href: search-indexer-overview.md
276285
- name: Create an indexer
277286
href: search-howto-create-indexers.md
278287
- name: Run or reset indexers
@@ -281,6 +290,10 @@
281290
href: search-howto-schedule-indexers.md
282291
- name: Define field mappings
283292
href: search-indexer-field-mappings.md
293+
- name: Portal indexing
294+
items:
295+
- name: Import data wizard
296+
href: search-import-data-portal.md
284297
- name: Indexing whole files
285298
items:
286299
- name: Content metadata properties
@@ -307,82 +320,74 @@
307320
href: search-indexer-troubleshooting.md
308321
- name: Troubleshoot indexer errors and warnings
309322
href: cognitive-search-common-errors-warnings.md
310-
- name: Data sources (indexers)
311-
items:
312-
- name: Data sources gallery
313-
href: search-data-sources-gallery.md
314-
- name: Azure Storage
315-
items:
316-
- name: Search over blobs
317-
href: search-blob-storage-integration.md
318-
- name: ADLS Gen2
319-
href: search-howto-index-azure-data-lake-storage.md
320-
- name: Blobs
321-
href: search-howto-indexing-azure-blob-storage.md
322-
- name: Files
323-
href: search-file-storage-integration.md
324-
- name: Tables
325-
href: search-howto-indexing-azure-tables.md
326-
- name: Index changed and deleted content
327-
href: search-howto-index-changed-deleted-blobs.md
328-
- name: Azure Cosmos DB
329-
items:
330-
- name: Azure Cosmos DB for NoSQL
331-
href: search-howto-index-cosmosdb.md
332-
- name: Azure Cosmos DB for MongoDB
333-
href: search-howto-index-cosmosdb-mongodb.md
334-
- name: Azure Cosmos DB for Apache Gremlin
335-
href: search-howto-index-cosmosdb-gremlin.md
336-
- name: Azure DB for MySQL
337-
href: search-howto-index-mysql.md
338-
- name: Azure SQL
339-
items:
340-
- name: Azure SQL Databases
341-
href: search-howto-connecting-azure-sql-database-to-azure-search-using-indexers.md
342-
- name: Azure SQL Managed Instances
343-
href: search-howto-connecting-azure-sql-mi-to-azure-search-using-indexers.md
344-
- name: Azure SQL Server VMs
345-
href: search-howto-connecting-azure-sql-iaas-to-azure-search-using-indexers.md
346-
- name: SharePoint in Microsoft 365
347-
href: search-howto-index-sharepoint-online.md
348-
- name: Skillsets (indexers)
349-
items:
350-
- name: Attach an Azure AI multi-service resource
351-
href: cognitive-search-attach-cognitive-services.md
352-
- name: Create a skillset
353-
href: cognitive-search-defining-skillset.md
354-
- name: Debug a skillset
355-
href: cognitive-search-how-to-debug-skillset.md
356-
- name: Reference an annotation
357-
href: cognitive-search-concept-annotations-syntax.md
358-
- name: Map to index fields
359-
href: cognitive-search-output-field-mapping.md
360-
- name: Process image files
361-
href: cognitive-search-concept-image-scenarios.md
362-
- name: Cache (incremental) enrichment
363-
href: search-howto-incremental-index.md
364-
- name: Design tips
365-
href: cognitive-search-concept-troubleshooting.md
366-
- name: Custom skills
323+
- name: Data sources (indexers)
367324
items:
368-
- name: Integrate custom skills
369-
href: cognitive-search-custom-skill-interface.md
370-
- name: Scale out custom skills
371-
href: cognitive-search-custom-skill-scale.md
372-
- name: Example - Bing Entity Search
373-
href: cognitive-search-create-custom-skill-example.md
374-
- name: Knowledge stores
375-
items:
376-
- name: Create using REST
377-
href: knowledge-store-create-rest.md
378-
- name: Shaping data
379-
href: knowledge-store-projection-shape.md
380-
- name: Define projections
381-
href: knowledge-store-projections-examples.md
382-
- name: Projection example
383-
href: knowledge-store-projection-example-long.md
384-
- name: Connect with Power BI
385-
href: knowledge-store-connect-power-bi.md
325+
- name: Data sources gallery
326+
href: search-data-sources-gallery.md
327+
- name: Azure Storage
328+
items:
329+
- name: Search over blobs
330+
href: search-blob-storage-integration.md
331+
- name: ADLS Gen2
332+
href: search-howto-index-azure-data-lake-storage.md
333+
- name: Blobs
334+
href: search-howto-indexing-azure-blob-storage.md
335+
- name: Files
336+
href: search-file-storage-integration.md
337+
- name: Tables
338+
href: search-howto-indexing-azure-tables.md
339+
- name: Index changed and deleted content
340+
href: search-howto-index-changed-deleted-blobs.md
341+
- name: Azure Cosmos DB
342+
items:
343+
- name: Azure Cosmos DB for NoSQL
344+
href: search-howto-index-cosmosdb.md
345+
- name: Azure Cosmos DB for MongoDB
346+
href: search-howto-index-cosmosdb-mongodb.md
347+
- name: Azure Cosmos DB for Apache Gremlin
348+
href: search-howto-index-cosmosdb-gremlin.md
349+
- name: Azure DB for MySQL
350+
href: search-howto-index-mysql.md
351+
- name: Azure SQL
352+
items:
353+
- name: Azure SQL Databases
354+
href: search-howto-connecting-azure-sql-database-to-azure-search-using-indexers.md
355+
- name: Azure SQL Managed Instances
356+
href: search-howto-connecting-azure-sql-mi-to-azure-search-using-indexers.md
357+
- name: Azure SQL Server VMs
358+
href: search-howto-connecting-azure-sql-iaas-to-azure-search-using-indexers.md
359+
- name: SharePoint in Microsoft 365
360+
href: search-howto-index-sharepoint-online.md
361+
- name: Skillsets (indexers)
362+
items:
363+
- name: Attach an Azure AI multi-service resource
364+
href: cognitive-search-attach-cognitive-services.md
365+
- name: Create a skillset
366+
href: cognitive-search-defining-skillset.md
367+
- name: Create an index projection for a secondary index
368+
href: index-projections-concept-intro.md
369+
- name: Debug sessions overview
370+
href: cognitive-search-debug-session.md
371+
- name: Debug a skillset
372+
href: cognitive-search-how-to-debug-skillset.md
373+
- name: Reference an annotation
374+
href: cognitive-search-concept-annotations-syntax.md
375+
- name: Map to index fields
376+
href: cognitive-search-output-field-mapping.md
377+
- name: Process image files
378+
href: cognitive-search-concept-image-scenarios.md
379+
- name: Cache (incremental) enrichment
380+
href: search-howto-incremental-index.md
381+
- name: Design tips
382+
href: cognitive-search-concept-troubleshooting.md
383+
- name: Custom skills
384+
items:
385+
- name: Integrate custom skills
386+
href: cognitive-search-custom-skill-interface.md
387+
- name: Scale out custom skills
388+
href: cognitive-search-custom-skill-scale.md
389+
- name: Example - Bing Entity Search
390+
href: cognitive-search-create-custom-skill-example.md
386391
- name: Queries (text and vector)
387392
items:
388393
- name: Full text query
@@ -427,14 +432,14 @@
427432
href: search-query-fuzzy.md
428433
- name: Relevance
429434
items:
430-
- name: Configure BM25 ranking
431-
href: index-ranking-similarity.md
432-
- name: Add a scoring profile
433-
href: index-add-scoring-profiles.md
434435
- name: Enable or disable semantic ranking
435436
href: semantic-how-to-enable-disable.md
436437
- name: Configure semantic ranking
437438
href: semantic-how-to-query-request.md
439+
- name: Configure BM25 ranking
440+
href: index-ranking-similarity.md
441+
- name: Add a scoring profile
442+
href: index-add-scoring-profiles.md
438443
- name: Performance and monitoring
439444
items:
440445
- name: Performance analysis

articles/search/hybrid-search-overview.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.service: cognitive-search
99
ms.custom:
1010
- ignite-2023
1111
ms.topic: conceptual
12-
ms.date: 11/01/2023
12+
ms.date: 01/29/2024
1313
---
1414

1515
# Hybrid search using vectors and full text in Azure AI Search
@@ -24,9 +24,9 @@ This article explains the concepts, benefits, and limitations of hybrid search.
2424

2525
## How does hybrid search work?
2626

27-
In Azure AI Search, vector indexes containing embeddings can live alongside textual and numerical fields allowing you to issue hybrid full text and vector queries. Hybrid queries can take advantage of existing functionality like filtering, faceting, sorting, scoring profiles, and [semantic ranking](semantic-search-overview.md) in a single search request.
27+
In Azure AI Search, vector fields containing embeddings can live alongside textual and numerical fields, allowing you to formulate hybrid queries that execute in parallel. Hybrid queries can take advantage of existing functionality like filtering, faceting, sorting, scoring profiles, and [semantic ranking](semantic-search-overview.md) in a single search request.
2828

29-
Hybrid search combines results from both full text and vector queries, which use different ranking functions such as BM25 and HNSW. A [Reciprocal Rank Fusion (RRF)](hybrid-search-ranking.md) algorithm is used to merge results. The query response provides just one result set, using RRF to determine which matches are included.
29+
Hybrid search combines results from both full text and vector queries, which use different ranking functions such as BM25 and HNSW. A [Reciprocal Rank Fusion (RRF)](hybrid-search-ranking.md) algorithm merges the results. The query response provides just one result set, using RRF to pick the most relevant matches from each query.
3030

3131
## Structure of a hybrid query
3232

articles/search/index.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@ landingContent:
6464
linkLists:
6565
- linkListType: how-to-guide
6666
links:
67-
- text: Create a vector index in AI Studio
67+
- text: Create a vector store in AI Studio
6868
url: /azure/ai-studio/how-to/index-add
6969
- text: Build a question and answer copilot
7070
url: /azure/ai-studio/tutorials/deploy-copilot-ai-studio
25.7 KB
Loading

articles/search/search-faq-frequently-asked-questions.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ sections:
104104
- question: |
105105
How does vector search work in Azure AI Search?
106106
answer: |
107-
With standalone vector search, you first use a deep neural network (DNN), such as a large language model (LLM), to transform content into a vector representation within an embedding space. You can then provide these vectors in a document payload to the search index for indexing. To serve search requests, you use the same DNN from indexing to transform the search query into a vector representation, and vector search finds the most similar vectors and return the corresponding documents.
107+
With standalone vector search, you first use an embedding model to transform content into a vector representation within an embedding space. You can then provide these vectors in a document payload to the search index for indexing. To serve search requests, you use the same DNN from indexing to transform the search query into a vector representation, and vector search finds the most similar vectors and return the corresponding documents.
108108
109109
In Azure AI Search, you can index vector data as fields in documents alongside textual and other types of content. The data type for a vector field is `Collection(Edm.Single)`.
110110

0 commit comments

Comments
 (0)