Skip to content

Commit 8dacda0

Browse files
committed
Update environment setup guide
1 parent 4d3f989 commit 8dacda0

File tree

1 file changed

+4
-7
lines changed

1 file changed

+4
-7
lines changed

articles/machine-learning/how-to-use-parallel-run-step.md

Lines changed: 4 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -261,22 +261,19 @@ file_path = os.path.join(script_dir, "<file_name>")
261261

262262
Now you have everything you need: the data inputs, the model, the output and your inference script. Let's build the batch inference pipeline containing ParallelRunStep.
263263

264-
### Prepare the run environment
264+
### Prepare the environment
265265

266-
First, specify the dependencies for your script. This allows you to install pip packages as well as configure the inference environment.
267-
- Please always include **azureml-core** package.
268-
- If your input is `FileDataset`, please include **azureml-dataprep[fuse]**.
269-
- If your input is `TabularDataset`, please include **azureml-dataprep[pandas, fuse]**.
266+
First, specify the dependencies for your script. This allows you to install pip packages as well as configure the environment. Please always include **azureml-core** and **azureml-dataprep[pandas, fuse]** packages.
270267

271-
`FileDataset` is used in this example, you will need to include **azureml-dataprep[fuse]** package.
268+
If you use custom docker image, you should also have conda installed.
272269

273270
```python
274271
from azureml.core.environment import Environment
275272
from azureml.core.conda_dependencies import CondaDependencies
276273
from azureml.core.runconfig import DEFAULT_GPU_IMAGE
277274

278275
batch_conda_deps = CondaDependencies.create(pip_packages=["tensorflow==1.13.1", "pillow",
279-
"azureml-core", "azureml-dataprep[fuse]"])
276+
"azureml-core", "azureml-dataprep[pandas, fuse]"])
280277

281278
batch_env = Environment(name="batch_environment")
282279
batch_env.python.conda_dependencies = batch_conda_deps

0 commit comments

Comments
 (0)