Skip to content

Commit 8de3390

Browse files
authored
Merge pull request #101300 from trevorbye/master
bug and git issue fixes
2 parents b27668c + 4b2e0d8 commit 8de3390

File tree

3 files changed

+12
-18
lines changed

3 files changed

+12
-18
lines changed

articles/machine-learning/how-to-configure-auto-train.md

Lines changed: 7 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -79,10 +79,11 @@ The following code examples demonstrate how to store the data in these formats.
7979
* TabularDataset
8080
```python
8181
from azureml.core.dataset import Dataset
82+
from azureml.opendatasets import Diabetes
8283

83-
tabular_dataset = Dataset.Tabular.from_delimited_files("https://automldemods.blob.core.windows.net/datasets/PlayaEvents2016,_1.6MB,_3.4k-rows.cleaned.2.tsv")
84-
train_dataset, test_dataset = tabular_dataset.random_split(percentage = 0.1, seed = 42)
85-
label = "Label"
84+
tabular_dataset = Diabetes.get_tabular_dataset()
85+
train_dataset, test_dataset = tabular_dataset.random_split(percentage=0.1, seed=42)
86+
label = "Y"
8687
```
8788

8889
* Pandas dataframe
@@ -91,9 +92,9 @@ The following code examples demonstrate how to store the data in these formats.
9192
import pandas as pd
9293
from sklearn.model_selection import train_test_split
9394

94-
df = pd.read_csv("https://automldemods.blob.core.windows.net/datasets/PlayaEvents2016,_1.6MB,_3.4k-rows.cleaned.2.tsv", delimiter="\t", quotechar='"')
95-
train_data, test_data = train_test_split(df, test_size = 0.1, random_state = 42)
96-
label = "Label"
95+
df = pd.read_csv("your-local-file.csv")
96+
train_data, test_data = train_test_split(df, test_size=0.1, random_state=42)
97+
label = "label-col-name"
9798
```
9899

99100
## Fetch data for running experiment on remote compute

articles/machine-learning/how-to-create-register-datasets.md

Lines changed: 3 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -194,16 +194,7 @@ titanic_ds = titanic_ds.register(workspace=workspace,
194194

195195
To create datasets with Azure Open Datasets from the SDK, make sure you've installed the package with `pip install azureml-opendatasets`. Each discrete data set is represented by its own class in the SDK, and certain classes are available as either a `TabularDataset`, `FileDataset`, or both. See the [reference documentation](https://docs.microsoft.com/python/api/azureml-opendatasets/azureml.opendatasets?view=azure-ml-py) for a full list of classes.
196196

197-
Most classes inherit from and return an instance of `TabularDataset`. Examples of these classes include `PublicHolidays`, `BostonSafety`, and `UsPopulationZip`. To create a `TabularDataset` from these types of classes, use the constructor with no arguments. When you register a dataset created from Open Datasets, no data is immediately downloaded, but the data will be accessed later when requested (during training, for example) from a central storage location.
198-
199-
```python
200-
from azureml.opendatasets import UsPopulationZip
201-
202-
tabular_dataset = UsPopulationZip()
203-
tabular_dataset = tabular_dataset.register(workspace=workspace, name="pop data", description="US population data by zip code")
204-
```
205-
206-
You can retrieve certain classes as either a `TabularDataset` or `FileDataset`, which allows you to manipulate and/or download the files directly. Other classes can get a dataset only by using either the `get_tabular_dataset()` or `get_file_dataset()` functions. The following code sample shows a few examples of these types of classes:
197+
You can retrieve certain classes as either a `TabularDataset` or `FileDataset`, which allows you to manipulate and/or download the files directly. Other classes can get a dataset **only** by using one of `get_tabular_dataset()` or `get_file_dataset()` functions. The following code sample shows a few examples of these types of classes.
207198

208199
```python
209200
from azureml.opendatasets import MNIST
@@ -218,6 +209,8 @@ from azureml.opendatasets import Diabetes
218209
diabetes_tabular = Diabetes.get_tabular_dataset()
219210
```
220211

212+
When you register a dataset created from Open Datasets, no data is immediately downloaded, but the data will be accessed later when requested (during training, for example) from a central storage location.
213+
221214
### Use the UI
222215

223216
You can also create datasets from Open Datasets classes through the UI. In your workspace, select the **Datasets** tab under **Assets**. On the **Create dataset** drop-down menu, select **From Open Datasets**.

articles/machine-learning/how-to-machine-learning-interpretability-aml.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -329,10 +329,10 @@ You can load the local, feature importance plot for any data point by selecting
329329
jupyter labextension install microsoft-mli-widget
330330
```
331331

332-
To load the visualization dashboard, use the following code:
332+
To load the visualization dashboard, use the following code.
333333

334334
```python
335-
from azureml.contrib.interpret.visualize import ExplanationDashboard
335+
from interpret_community.widget import ExplanationDashboard
336336

337337
ExplanationDashboard(global_explanation, model, x_test)
338338
```

0 commit comments

Comments
 (0)