You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|{dataset1} is not valid, {reason}. {troubleshoot_hint}|
400
400
401
401
402
402
## Error 0019
@@ -409,10 +409,10 @@ For text columns, you can use [Feature Hashing](../algorithm-module-reference/fe
409
409
410
410
|Exception Messages|
411
411
|------------------------|
412
-
|Values in column aren't sorted.|
413
-
|Values in column "{col_index}" aren't sorted.|
414
-
|Values in column "{col_index}" of dataset "{dataset}" aren't sorted.|
415
-
|Values in argument "{arg_name}" aren't sorted in "{sorting_order}" order.|
412
+
|Values in column are not sorted.|
413
+
|Values in column "{col_index}" are not sorted.|
414
+
|Values in column "{col_index}" of dataset "{dataset}" are not sorted.|
415
+
|Values in argument "{arg_name}" are not sorted in "{sorting_order}" order.|
416
416
417
417
418
418
## Error 0020
@@ -460,7 +460,7 @@ For text columns, you can use [Feature Hashing](../algorithm-module-reference/fe
460
460
461
461
- You specify a single label column or key column and accidentally selected multiple columns.
462
462
463
-
- You're renaming columns, but provided more or fewer names then there are columns.
463
+
- You're renaming columns, but provided more or fewer names than there are columns.
464
464
465
465
- The number of columns in the source or destination has changed or doesn't match the number of columns used by the component.
466
466
@@ -479,10 +479,10 @@ For text columns, you can use [Feature Hashing](../algorithm-module-reference/fe
479
479
480
480
|Exception Messages|
481
481
|------------------------|
482
-
|Number of selected columns in input dataset doesn't equal to the expected number.|
483
-
|Number of selected columns in input dataset doesn't equal to {expected_col_count}.|
482
+
|Number of selected columns in input dataset does not equal to the expected number.|
483
+
|Number of selected columns in input dataset does not equal to {expected_col_count}.|
484
484
|Column selection pattern "{selection_pattern_friendly_name}" provides number of selected columns in input dataset not equal to {expected_col_count}.|
485
-
|Column selection pattern "{selection_pattern_friendly_name}" is expected to provide {expected_col_count} column(s) selected in input dataset, but {selected_col_count} column(s) is/are provided.|
485
+
|Column selection pattern "{selection_pattern_friendly_name}" is expected to provide {expected_col_count} column(s) selected in input dataset, but {selected_col_count} column(s) is/are actually provided.|
486
486
487
487
488
488
## Error 0023
@@ -517,8 +517,8 @@ It can also happen that a label column is present in the dataset, but not detect
517
517
518
518
|Exception Messages|
519
519
|------------------------|
520
-
|There's no label column in dataset.|
521
-
|There's no label column in "{dataset_name}".|
520
+
|There is no label column in dataset.|
521
+
|There is no label column in "{dataset_name}".|
522
522
523
523
524
524
## Error 0025
@@ -531,9 +531,9 @@ It can also happen that a label column is present in the dataset, but not detect
531
531
532
532
|Exception Messages|
533
533
|------------------------|
534
-
|There's no score column in dataset.|
535
-
|There's no score column in "{dataset_name}".|
536
-
|There's no score column in "{dataset_name}" that is produced by a "{learner_type}". Score the dataset using the correct type of learner.|
534
+
|There is no score column in dataset.|
535
+
|There is no score column in "{dataset_name}".|
536
+
|There is no score column in "{dataset_name}" that is produced by a "{learner_type}". Score the dataset using the correct type of learner.|
537
537
538
538
539
539
## Error 0026
@@ -546,8 +546,8 @@ It can also happen that a label column is present in the dataset, but not detect
546
546
547
547
|Exception Messages|
548
548
|------------------------|
549
-
|Equal column names are specified in arguments. Equal column names aren't allowed by component.|
550
-
|Equal column names in arguments "{arg_name_1}" and "{arg_name_2}" aren't allowed. Specify different names.|
549
+
|Equal column names are specified in arguments. Equal column names are not allowed by component.|
550
+
|Equal column names in arguments "{arg_name_1}" and "{arg_name_2}" are not allowed. Please specify different names.|
551
551
552
552
553
553
## Error 0027
@@ -649,8 +649,8 @@ It can also happen that a label column is present in the dataset, but not detect
649
649
650
650
|Exception Messages|
651
651
|------------------------|
652
-
|Argument isn't a number.|
653
-
|"{arg_name}" isn't a number.|
652
+
|Argument is not a number.|
653
+
|"{arg_name}" is not a number.|
654
654
655
655
656
656
## Error 0033
@@ -664,7 +664,7 @@ It can also happen that a label column is present in the dataset, but not detect
@@ -787,9 +787,9 @@ Another reason you might get this error if you try to use a column containing fl
787
787
|Exception Messages|
788
788
|------------------------|
789
789
|Not allowed conversion.|
790
-
|Couldn't convert column of type {type1} to column of type {type2}.|
791
-
|Couldn't convert column "{col_name1}" of type {type1} to column of type {type2}.|
792
-
|Couldn't convert column "{col_name1}" of type {type1} to column "{col_name2}" of type {type2}.|
790
+
|Could not convert column of type {type1} to column of type {type2}.|
791
+
|Could not convert column "{col_name1}" of type {type1} to column of type {type2}.|
792
+
|Could not convert column "{col_name1}" of type {type1} to column "{col_name2}" of type {type2}.|
793
793
794
794
795
795
## Error 0044
@@ -802,9 +802,9 @@ Another reason you might get this error if you try to use a column containing fl
802
802
803
803
|Exception Messages|
804
804
|------------------------|
805
-
|Can't derive element type of the column.|
806
-
|Can't derive element type for column "{column_name}" -- all the elements are null references.|
807
-
|Can't derive element type for column "{column_name}" of dataset "{dataset_name}" -- all the elements are null references.|
805
+
|Cannot derive element type of the column.|
806
+
|Cannot derive element type for column "{column_name}" -- all the elements are null references.|
807
+
|Cannot derive element type for column "{column_name}" of dataset "{dataset_name}" -- all the elements are null references.|
808
808
809
809
810
810
## Error 0045
@@ -817,9 +817,9 @@ Another reason you might get this error if you try to use a column containing fl
817
817
818
818
|Exception Messages|
819
819
|------------------------|
820
-
|Can't create column with mixed element types.|
821
-
|Can't create column with id "{column_id}" of mixed element types:<br />Type of data[{row_1}, {column_id}] is "{type_1}". <br />Type of data[{row_2}, {column_id}] is "{type_2}".|
822
-
|Can't create column with id "{column_id}" of mixed element types:<br />Type in chunk {chunk_id_1} is "{type_1}". <br />Type in chunk {chunk_id_2} is "{type_2}" with chunk size: {chunk_size}.|
820
+
|Cannot create column with mixed element types.|
821
+
|Cannot create column with id "{column_id}" of mixed element types:<br />Type of data[{row_1}, {column_id}] is "{type_1}". <br />Type of data[{row_2}, {column_id}] is "{type_2}".|
822
+
|Cannot create column with id "{column_id}" of mixed element types:<br />Type in chunk {chunk_id_1} is "{type_1}". <br />Type in chunk {chunk_id_2} is "{type_2}" with chunk size: {chunk_size}.|
823
823
824
824
825
825
## Error 0046
@@ -832,8 +832,8 @@ Another reason you might get this error if you try to use a column containing fl
832
832
833
833
|Exception Messages|
834
834
|------------------------|
835
-
|Specify a valid output directory.|
836
-
|Directory: {path} can't be created. Specify valid path.|
835
+
|Please specify a valid output directory.|
836
+
|Directory: {path} cannot be created. Please specify valid path.|
837
837
838
838
839
839
## Error 0047
@@ -944,8 +944,8 @@ Another reason you might get this error if you try to use a column containing fl
944
944
945
945
|Exception Messages|
946
946
|------------------------|
947
-
|One or more selected columns weren't in an allowed category.|
948
-
|Column with name "{col_name}" isn't in an allowed category.|
947
+
|One or more selected columns were not in an allowed category.|
948
+
|Column with name "{col_name}" is not in an allowed category.|
949
949
950
950
951
951
## Error 0057
@@ -982,11 +982,11 @@ Another reason you might get this error if you try to use a column containing fl
|SQL query "{sql_query}" is not correct. Exception message: {exception}.|
1168
1168
1169
1169
1170
1170
## Error 0070
@@ -1177,8 +1177,8 @@ See the following articles for help with Hive queries for machine learning:
1177
1177
1178
1178
|Exception Messages|
1179
1179
|------------------------|
1180
-
|Azure table doesn't exist.|
1181
-
|Azure table "{table_name}" doesn't exist.|
1180
+
|Azure table does not exist.|
1181
+
|Azure table "{table_name}" does not exist.|
1182
1182
1183
1183
1184
1184
## Error 0072
@@ -1275,7 +1275,7 @@ Error handling for this event was introduced in an earlier version of Azure Mach
1275
1275
1276
1276
|Exception Messages|
1277
1277
|------------------------|
1278
-
|Columns with all values missing aren't allowed.|
1278
+
|Columns with all values missing are not allowed.|
1279
1279
|Column {col_index_or_name} has all values missing.|
1280
1280
1281
1281
@@ -1302,7 +1302,7 @@ Error handling for this event was introduced in an earlier version of Azure Mach
1302
1302
1303
1303
|Exception Messages|
1304
1304
|------------------------|
1305
-
|Model couldn't be deserialized because it's likely serialized with an older serialization format. Retrain and resave the model.|
1305
+
|Model could not be deserialized because it is likely serialized with an older serialization format. Retrain and resave the model.|
1306
1306
1307
1307
1308
1308
## Error 0083
@@ -1358,9 +1358,9 @@ Error handling for this event was introduced in an earlier version of Azure Mach
1358
1358
1359
1359
|Exception Messages|
1360
1360
|------------------------|
1361
-
|The Hive table couldn't be created. For a HDInsight cluster, please ensure the Azure storage account name associated with cluster is the same as what is passed in through the component parameter.|
1362
-
|The Hive table "{table_name}" couldn't be created. For a HDInsight cluster, please ensure the Azure storage account name associated with cluster is the same as what is passed in through the component parameter.|
1363
-
|The Hive table "{table_name}" couldn't be created. For a HDInsight cluster, ensure the Azure storage account name associated with cluster is "{cluster_name}".|
1361
+
|The Hive table could not be created. For a HDInsight cluster, please ensure the Azure storage account name associated with cluster is the same as what is passed in through the component parameter.|
1362
+
|The Hive table "{table_name}" could not be created. For a HDInsight cluster, please ensure the Azure storage account name associated with cluster is the same as what is passed in through the component parameter.|
1363
+
|The Hive table "{table_name}" could not be created. For a HDInsight cluster, ensure the Azure storage account name associated with cluster is "{cluster_name}".|
1364
1364
1365
1365
1366
1366
## Error 0102
@@ -1377,13 +1377,13 @@ Error handling for this event was introduced in an earlier version of Azure Mach
1377
1377
1378
1378
|Exception Messages|
1379
1379
|------------------------|
1380
-
|Given ZIP file isn't in the correct format.|
1380
+
|Given ZIP file is not in the correct format.|
1381
1381
1382
1382
1383
1383
## Error 0105
1384
1384
This error is displayed when a component definition file contains an unsupported parameter type.
1385
1385
1386
-
This error in Azure Machine Learning is produced when you creating a custom component xml definition and the type of a parameter or argument in the definition doesn't match a supported type.
1386
+
This error in Azure Machine Learning is produced when you create a custom component xml definition and the type of a parameter or argument in the definition doesn't match a supported type.
1387
1387
1388
1388
**Resolution:**
1389
1389
Make sure that the type property of any **Arg** element in the custom component xml definition file is a supported type.
@@ -1415,7 +1415,7 @@ Error handling for this event was introduced in an earlier version of Azure Mach
1415
1415
1416
1416
|Exception Messages|
1417
1417
|------------------------|
1418
-
|Dataset schema doesn't match.|
1418
+
|Dataset schema does not match.|
1419
1419
1420
1420
1421
1421
## Error 0127
@@ -1526,17 +1526,17 @@ Resolution:
1526
1526
1527
1527
|Exception Messages|
1528
1528
|------------------------|
1529
-
|Key column element types aren't compatible.|
1530
-
|Key column element types aren't compatible.(left: {keys_left}; right: {keys_right})|
1529
+
|Key column element types are not compatible.|
1530
+
|Key column element types are not compatible.(left: {keys_left}; right: {keys_right})|
1531
1531
1532
1532
1533
1533
## Error 0155
1534
1534
Exception occurs when column names of dataset aren't string.
1535
1535
1536
1536
|Exception Messages|
1537
1537
|------------------------|
1538
-
|The dataframe column name must be string type. Column names aren't string.|
1539
-
|The dataframe column name must be string type. Column names {column_names} aren't string.|
1538
+
|The dataframe column name must be string type. Column names are not string.|
1539
+
|The dataframe column name must be string type. Column names {column_names} are not string.|
0 commit comments