Skip to content

Commit 8f456dc

Browse files
authored
Update how-to-datastore.md
1 parent 519c82f commit 8f456dc

File tree

1 file changed

+20
-28
lines changed

1 file changed

+20
-28
lines changed

articles/machine-learning/how-to-datastore.md

Lines changed: 20 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -420,30 +420,22 @@ az ml datastore create --file my_adls_datastore.yml
420420

421421
## Create a OneLake (Microsoft Fabric) datastore (preview)
422422

423-
This section describes various options to create a OneLake datastore. The OneLake datastore is part of Microsoft Fabric. At this time, Machine Learning supports connection to Microsoft Fabric lakehouse artifacts that include folders or files and Amazon S3 shortcuts. For more information about lakehouses, see [What is a lakehouse in Microsoft Fabric?](/fabric/data-engineering/lakehouse-overview).
423+
This section describes various options to create a OneLake datastore. The OneLake datastore is part of Microsoft Fabric. At this time, Machine Learning supports connection to Microsoft Fabric lakehouse artifacts in "Files" folder that include folders or files and Amazon S3 shortcuts. For more information about lakehouses, see [What is a lakehouse in Microsoft Fabric?](/fabric/data-engineering/lakehouse-overview).
424424

425425
OneLake datastore creation requires the following information from your Microsoft Fabric instance:
426426

427427
- Endpoint
428-
- Fabric workspace name or GUID
429-
- Artifact name or GUID
428+
- Fabric GUID
429+
- Artifact GUID
430430

431-
The following three screenshots describe the retrieval of these required information resources from your Microsoft Fabric instance.
431+
The following screenshots describe the retrieval of these required information resources from your Microsoft Fabric instance.
432+
:::image type="content" source="media/how-to-datastore/onelake-properties.png" alt-text="Screenshot that shows how to click into artifact properties of Microsoft Fabric workspace artifact in Microsoft Fabric UI." lightbox="./media/how-to-datastore/onelake-properties.png":::
432433

433-
### OneLake workspace name
434-
In your Microsoft Fabric instance, you can find the workspace information, as shown in this screenshot. You can use either a GUID value or a "friendly name" to create a Machine Learning OneLake datastore.
434+
You will then find "URL" and "ABFS path" in the "Properties" page:
435435

436-
:::image type="content" source="media/how-to-datastore/fabric-workspace.png" alt-text="Screenshot that shows Microsoft Fabric workspace details in the Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-workspace.png":::
437-
438-
### OneLake endpoint
439-
This screenshot shows how you can find endpoint information in your Microsoft Fabric instance.
440-
441-
:::image type="content" source="media/how-to-datastore/fabric-endpoint.png" alt-text="Screenshot that shows Microsoft Fabric endpoint details in the Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-endpoint.png":::
442-
443-
### OneLake artifact name
444-
This screenshot shows how you can find the artifact information in your Microsoft Fabric instance. The screenshot also shows how you can use either a GUID value or a friendly name to create a Machine Learning OneLake datastore.
445-
446-
:::image type="content" source="media/how-to-datastore/fabric-lakehouse.png" alt-text="Screenshot that shows how to get Microsoft Fabric lakehouse artifact details in the Microsoft Fabric UI." lightbox="./media/how-to-datastore/fabric-lakehouse.png":::
436+
- URL format: https://{your_one_lake_endpoint}/{your_one_lake_workspace_name}/{your_one_lake_artifact_name}/Files
437+
- ABFS path format: abfss://{your_one_lake_workspace_name}@{your_one_lake_endpoint}/{your_one_lake_artifact_name}/Files
438+
:::image type="content" source="media/how-to-datastore/onelake-url-abfspath.png" alt-text="Screenshot that shows URL and ABFS path of a OneLake artifact properties in Microsoft Fabric UI." lightbox="./media/how-to-datastore/onelake-url-abfspath.png":::
447439

448440
## Create a OneLake datastore
449441

@@ -458,10 +450,10 @@ ml_client = MLClient.from_config()
458450
store = OneLakeDatastore(
459451
name="onelake_example_id",
460452
description="Datastore pointing to an Microsoft fabric artifact.",
461-
one_lake_workspace_name="AzureML_Sample_OneLakeWS",
462-
endpoint="msit-onelake.dfs.fabric.microsoft.com"
453+
one_lake_workspace_name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", #{your_one_lake_workspace_name}
454+
endpoint="msit-onelake.dfs.fabric.microsoft.com" #{your_one_lake_endpoint}
463455
artifact = OneLakeArtifact(
464-
name="AzML_Sample_LH",
456+
name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files","{your_one_lake_artifact_name}/Files
465457
type="lake_house"
466458
)
467459
)
@@ -486,10 +478,10 @@ ml_client = MLClient.from_config()
486478
store = OneLakeDatastore(
487479
name="onelake_example_sp",
488480
description="Datastore pointing to an Microsoft fabric artifact.",
489-
one_lake_workspace_name="AzureML_Sample_OneLakeWS",
490-
endpoint="msit-onelake.dfs.fabric.microsoft.com"
481+
one_lake_workspace_name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX", #{your_one_lake_workspace_name}
482+
endpoint="msit-onelake.dfs.fabric.microsoft.com" #{your_one_lake_endpoint}
491483
artifact = OneLakeArtifact(
492-
name="AzML_Sample_LH",
484+
name="XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files","{your_one_lake_artifact_name}/Files
493485
type="lake_house"
494486
)
495487
credentials=ServicePrincipalCredentials(
@@ -511,11 +503,11 @@ $schema: http://azureml/sdk-2-0/OneLakeDatastore.json
511503
name: onelake_example_id
512504
type: one_lake
513505
description: Credential-less datastore pointing to a OneLake lakehouse.
514-
one_lake_workspace_name: "AzureML_Sample_OneLakeWS"
506+
one_lake_workspace_name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
515507
endpoint: "msit-onelake.dfs.fabric.microsoft.com"
516508
artifact:
517509
type: lake_house
518-
name: "AzML_Sample_LH"
510+
name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files"
519511
```
520512
521513
Create the Machine Learning datastore in the CLI:
@@ -533,11 +525,11 @@ $schema: http://azureml/sdk-2-0/OneLakeDatastore.json
533525
name: onelake_example_id
534526
type: one_lake
535527
description: Credential-less datastore pointing to a OneLake lakehouse.
536-
one_lake_workspace_name: "AzureML_Sample_OneLakeWS"
528+
one_lake_workspace_name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
537529
endpoint: "msit-onelake.dfs.fabric.microsoft.com"
538530
artifact:
539531
type: lake_house
540-
name: "AzML_Sample_LH"
532+
name: "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/Files"
541533
credentials:
542534
tenant_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
543535
client_id: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
@@ -556,4 +548,4 @@ az ml datastore create --file my_onelakesp_datastore.yml
556548
- [Access data in a job](how-to-read-write-data-v2.md#access-data-in-a-job)
557549
- [Create and manage data assets](how-to-create-data-assets.md#create-and-manage-data-assets)
558550
- [Import data assets (preview)](how-to-import-data-assets.md#import-data-assets-preview)
559-
- [Data administration](how-to-administrate-data-authentication.md#data-administration)
551+
- [Data administration](how-to-administrate-data-authentication.md#data-administration)

0 commit comments

Comments
 (0)