Skip to content

Commit 93c8873

Browse files
authored
Update how-to-use-batch-endpoint.md
1 parent b06f935 commit 93c8873

File tree

1 file changed

+19
-5
lines changed

1 file changed

+19
-5
lines changed

articles/machine-learning/how-to-use-batch-endpoint.md

Lines changed: 19 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -541,38 +541,52 @@ Use `output-path` to configure any folder in an Azure Machine Learning registere
541541

542542
# [Python](#tab/python)
543543

544-
Use `output_path` to configure any folder in an Azure Machine Learning registered datastore. The syntax for the `--output-path` is the same as `--input` when you're specifying a folder, that is, `azureml://datastores/<datastore-name>/paths/<path-on-datastore>/`. Use `output_file_name=<your-file-name>` to configure a new output file name.
544+
Use `params_override` to configure any folder in an Azure Machine Learning registered data store. Only registered data stores are supported as output paths. In this example we will use the default data store:
545+
546+
```python
547+
batch_ds = ml_client.datastores.get_default()
548+
```
549+
550+
Once you identified the data store you want to use, configure the output as follows:
545551

546552
```python
547553
job = ml_client.batch_endpoints.invoke(
548554
endpoint_name=endpoint_name,
549555
inputs={
550556
"input": Input(path="https://pipelinedata.blob.core.windows.net/sampledata/mnist", type=AssetTypes.URI_FOLDER)
551557
},
552-
output_path={
553-
"score": Input(path=f"azureml://datastores/workspaceblobstore/paths/{endpoint_name}")
554-
},
555-
output_file_name="predictions.csv"
558+
params_override=[
559+
{ "output_dataset.datastore_id": f"azureml:{batch_ds.id}" },
560+
{ "output_dataset.path": "/mnist-batch-results" }
561+
{ "output_file_name": "mnist-predictions.csv" },
562+
]
556563
)
557564
```
558565

559566
# [Studio](#tab/azure-studio)
560567

561568
1. Navigate to the __Endpoints__ tab on the side menu.
569+
562570
1. Select the tab __Batch endpoints__.
571+
563572
1. Select the batch endpoint you just created.
573+
564574
1. Select __Create job__.
565575

566576
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/create-batch-job.png" alt-text="Screenshot of the create job option to start batch scoring.":::
567577

568578
1. On __Deployment__, select the deployment you want to execute.
579+
569580
1. Select __Next__.
581+
570582
1. Check the option __Override deployment settings__.
571583

572584
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/overwrite-setting.png" alt-text="Screenshot of the overwrite setting when starting a batch job.":::
573585

574586
1. You can now configure __Output file name__ and some extra properties of the deployment execution. Just this execution will be affected.
587+
575588
1. On __Select data source__, select the data input you want to use.
589+
576590
1. On __Configure output location__, check the option __Enable output configuration__.
577591

578592
:::image type="content" source="./media/how-to-use-batch-endpoints-studio/configure-output-location.png" alt-text="Screenshot of optionally configuring output location.":::

0 commit comments

Comments
 (0)