Skip to content

Commit 972b811

Browse files
Merge pull request #263576 from santiagxf/santiagxf-patch-1
Update how-to-access-data-batch-endpoints-jobs.md
2 parents 3f0a562 + 3bcc3ba commit 972b811

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

articles/machine-learning/how-to-access-data-batch-endpoints-jobs.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -242,7 +242,7 @@ Azure Machine Learning data assets (formerly known as datasets) are supported as
242242
243243
```azurecli
244244
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
245-
--set inputs.heart_dataset.type uri_folder inputs.heart_dataset.path $DATASET_ID
245+
--set inputs.heart_dataset.type="uri_folder" inputs.heart_dataset.path=$DATASET_ID
246246
```
247247
248248
For an endpoint that serves a model deployment, you can use the `--input` argument to specify the data input, since a model deployment always requires only one data input.
@@ -387,7 +387,7 @@ Data from Azure Machine Learning registered data stores can be directly referenc
387387
388388
```azurecli
389389
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
390-
--set inputs.heart_dataset.type uri_folder inputs.heart_dataset.path $INPUT_PATH
390+
--set inputs.heart_dataset.type="uri_folder" inputs.heart_dataset.path=$INPUT_PATH
391391
```
392392
393393
For an endpoint that serves a model deployment, you can use the `--input` argument to specify the data input, since a model deployment always requires only one data input.
@@ -532,7 +532,7 @@ Azure Machine Learning batch endpoints can read data from cloud locations in Azu
532532

533533
```azurecli
534534
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
535-
--set inputs.heart_dataset.type uri_folder inputs.heart_dataset.path $INPUT_DATA
535+
--set inputs.heart_dataset.type="uri_folder" inputs.heart_dataset.path=$INPUT_DATA
536536
```
537537
538538
For an endpoint that serves a model deployment, you can use the `--input` argument to specify the data input, since a model deployment always requires only one data input.
@@ -621,7 +621,7 @@ You can also use the argument `--set` to specify the value. However, it tends to
621621

622622
```azurecli
623623
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
624-
--set inputs.score_mode.type string inputs.score_mode.default append
624+
--set inputs.score_mode.type="string" inputs.score_mode.default="append"
625625
```
626626

627627
# [Python](#tab/sdk)
@@ -752,8 +752,8 @@ The following example shows how to change the location where an output named `sc
752752
753753
```azurecli
754754
az ml batch-endpoint invoke --name $ENDPOINT_NAME \
755-
--set inputs.heart_dataset.path $INPUT_PATH \
756-
--set outputs.score.path $OUTPUT_PATH
755+
--set inputs.heart_dataset.path=$INPUT_PATH \
756+
--set outputs.score.path=$OUTPUT_PATH
757757
```
758758
759759
# [Python](#tab/sdk)

0 commit comments

Comments
 (0)