Skip to content

Commit 981fef4

Browse files
committed
link fix - more
1 parent 85ba05e commit 981fef4

File tree

1 file changed

+17
-17
lines changed

1 file changed

+17
-17
lines changed

articles/machine-learning/how-to-select-algorithms.md

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -39,29 +39,29 @@ Along with guidance in the Azure Machine Learning Algorithm Cheat Sheet, keep in
3939

4040
Some learning algorithms make particular assumptions about the structure of the data or the desired results. If you can find one that fits your needs, it can give you more useful results, more accurate predictions, or faster training times.
4141

42-
The following table summarizes some of the most important characteristics of algorithms from the classification, regression and clustering families:
42+
The following table summarizes some of the most important characteristics of algorithms from the classification, regression, and clustering families:
4343

4444
| **Algorithm** | **Accuracy** | **Training time** | **Linearity** | **Parameters** | **Notes** |
4545
| --- |:---:|:---:|:---:|:---:| --- |
4646
| **Classification family** | | | | | |
47-
| [Two-Class logistic regression](/algorithm-module-reference/two-class-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
48-
| [Two-class decision forest](/algorithm-module-reference/two-class-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times. Suggest not working with One-vs-All Multiclass, because of slower scoring times caused by tread locking in accumulating tree predictions |
49-
| [Two-class boosted decision tree](azure/machine-learning/algorithm-module-reference/two-class-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
50-
| [Two-class neural network](azure/machine-learning/algorithm-module-reference/two-class-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
51-
| [Two-class averaged perceptron](azure/machine-learning/algorithm-module-reference/two-class-averaged-perceptron?WT.mc_id=docs-article-lazzeri) |Good |Moderate |Yes |4 | |
52-
| [Two-class support vector machine](azure/machine-learning/algorithm-module-reference/two-class-support-vector-machine?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |5 |Good for large feature sets |
53-
| [Multiclass logistic regression](azure/machine-learning/algorithm-module-reference/multiclass-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
54-
| [Multiclass decision forest](azure/machine-learning/algorithm-module-reference/multiclass-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times |
55-
| [Multiclass boosted decision tree](azure/machine-learning/algorithm-module-reference/multiclass-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 | Tends to improve accuracy with some small risk of less coverage |
56-
| [Multiclass neural network](azure/machine-learning/algorithm-module-reference/multiclass-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
57-
| [One-vs-all multiclass](azure/machine-learning/algorithm-module-reference/one-vs-all-multiclass?WT.mc_id=docs-article-lazzeri) | - | - | - | - |See properties of the two-class method selected |
47+
| [Two-Class logistic regression](algorithm-module-reference/two-class-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
48+
| [Two-class decision forest](algorithm-module-reference/two-class-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times. Suggest not working with One-vs-All Multiclass, because of slower scoring times caused by tread locking in accumulating tree predictions |
49+
| [Two-class boosted decision tree](algorithm-module-reference/two-class-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
50+
| [Two-class neural network](algorithm-module-reference/two-class-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
51+
| [Two-class averaged perceptron](algorithm-module-reference/two-class-averaged-perceptron?WT.mc_id=docs-article-lazzeri) |Good |Moderate |Yes |4 | |
52+
| [Two-class support vector machine](algorithm-module-reference/two-class-support-vector-machine?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |5 |Good for large feature sets |
53+
| [Multiclass logistic regression](algorithm-module-reference/multiclass-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
54+
| [Multiclass decision forest](algorithm-module-reference/multiclass-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times |
55+
| [Multiclass boosted decision tree](algorithm-module-reference/multiclass-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 | Tends to improve accuracy with some small risk of less coverage |
56+
| [Multiclass neural network](algorithm-module-reference/multiclass-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
57+
| [One-vs-all multiclass](algorithm-module-reference/one-vs-all-multiclass?WT.mc_id=docs-article-lazzeri) | - | - | - | - |See properties of the two-class method selected |
5858
| **[Regression family]** | | | | | |
59-
| [Linear regression](azure/machine-learning/algorithm-module-reference/linear-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
60-
| [Decision forest regression](azure/machine-learning/algorithm-module-reference/decision-forest-regression?WT.mc_id=docs-article-lazzeri)|Excellent |Moderate |No |5 | |
61-
| [Boosted decision tree regression](azure/machine-learning/algorithm-module-reference/boosted-decision-tree-regression?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
62-
| [Neural network regression](azure/machine-learning/algorithm-module-reference/neural-network-regression?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
59+
| [Linear regression](algorithm-module-reference/linear-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
60+
| [Decision forest regression](algorithm-module-reference/decision-forest-regression?WT.mc_id=docs-article-lazzeri)|Excellent |Moderate |No |5 | |
61+
| [Boosted decision tree regression](algorithm-module-reference/boosted-decision-tree-regression?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
62+
| [Neural network regression](algorithm-module-reference/neural-network-regression?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
6363
| **Clustering family** | | | | | |
64-
| [K-means clustering](/azure/machine-learning/algorithm-module-reference/k-means-clustering?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |Yes |8 |A clustering algorithm |
64+
| [K-means clustering](/algorithm-module-reference/k-means-clustering?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |Yes |8 |A clustering algorithm |
6565

6666
## Requirements for a data science scenario
6767

0 commit comments

Comments
 (0)