Skip to content

Commit 989b897

Browse files
authored
Merge pull request #103136 from rastala/master
fix azureml-mlflow import
2 parents 363ee1a + 598af65 commit 989b897

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

articles/machine-learning/how-to-use-mlflow.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.service: machine-learning
99
ms.subservice: core
1010
ms.reviewer: nibaccam
1111
ms.topic: conceptual
12-
ms.date: 01/27/2020
12+
ms.date: 02/03/2020
1313
ms.custom: seodec18
1414
---
1515

@@ -103,7 +103,7 @@ MLflow Tracking with Azure Machine Learning lets you store the logged metrics an
103103

104104
Remote runs let you train your models on more powerful computes, such as GPU enabled virtual machines, or Machine Learning Compute clusters. See [Set up compute targets for model training](how-to-set-up-training-targets.md) to learn about different compute options.
105105

106-
Configure your compute and training run environment with the [`Environment`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py) class. Include `mlflow` and `azure-contrib-run` pip packages in environment's [`CondaDependencies`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py) section. Then construct [`ScriptRunConfig`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py) with your remote compute as the compute target.
106+
Configure your compute and training run environment with the [`Environment`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.environment.environment?view=azure-ml-py) class. Include `mlflow` and `azureml-mlflow` pip packages in environment's [`CondaDependencies`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.conda_dependencies.condadependencies?view=azure-ml-py) section. Then construct [`ScriptRunConfig`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.script_run_config.scriptrunconfig?view=azure-ml-py) with your remote compute as the compute target.
107107

108108
```Python
109109
from azureml.core.environment import Environment
@@ -115,7 +115,7 @@ exp = Experiment(workspace = 'my_workspace',
115115

116116
mlflow_env = Environment(name='mlflow-env')
117117

118-
cd = CondaDependencies.create(pip_packages=['mlflow', 'azureml-contrib-run'])
118+
cd = CondaDependencies.create(pip_packages=['mlflow', 'azureml-mlflow'])
119119

120120
mlflow_env.python.conda_dependencies = cd
121121

0 commit comments

Comments
 (0)