Skip to content

Commit 9cbf8bc

Browse files
committed
online
1 parent 3051d9d commit 9cbf8bc

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

articles/machine-learning/how-to-deploy-mlflow-models-online-endpoints.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -359,8 +359,8 @@ Use the following steps to deploy an MLflow model with a custom scoring script.
359359
def init():
360360
global model
361361
global input_schema
362-
# This name is model.id of model that we want to deploy deserialize the model file back
363-
# into a sklearn model
362+
# The path 'model' corresponds to the path where the MLflow artifacts where stored when
363+
# registering the model using MLflow format.
364364
model_path = os.path.join(os.getenv('AZUREML_MODEL_DIR'), 'model')
365365
model = mlflow.pyfunc.load_model(model_path)
366366
input_schema = model.metadata.get_input_schema()
@@ -394,7 +394,7 @@ Use the following steps to deploy an MLflow model with a custom scoring script.
394394
- scikit-learn==0.24.1
395395
- cloudpickle==2.0.0
396396
- psutil==5.8.0
397-
- pandas==1.5.2
397+
- pandas==1.3.5
398398
- azureml-inference-server-http
399399
name: mlflow-env
400400
```

0 commit comments

Comments
 (0)