Skip to content

Commit 9f6e447

Browse files
Merge pull request #226219 from ynpandey/patch-13
Updated interactive data wrangling Spark doc
2 parents 0a325fa + a4dca06 commit 9f6e447

File tree

1 file changed

+3
-19
lines changed

1 file changed

+3
-19
lines changed

articles/machine-learning/interactive-data-wrangling-with-apache-spark-azure-ml.md

Lines changed: 3 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -124,27 +124,11 @@ Data in the Azure storage account should become accessible once the user identit
124124

125125
Azure Machine Learning offers Managed (Automatic) Spark compute, and [attached Synapse Spark pool](./how-to-manage-synapse-spark-pool.md), for interactive data wrangling with Apache Spark, in Azure Machine Learning Notebooks. The Managed (Automatic) Spark compute does not require creation of resources in the Azure Synapse workspace. Instead, a fully managed automatic Spark compute becomes directly available in the Azure Machine Learning Notebooks. Using a Managed (Automatic) Spark compute is the easiest approach to access a Spark cluster in Azure Machine Learning.
126126

127-
### Create and configure Managed (Automatic) Spark compute in Azure Machine Learning Notebooks
127+
### Managed (Automatic) Spark compute in Azure Machine Learning Notebooks
128128

129-
We can create a Managed (Automatic) Spark compute from the Machine Learning Notebooks user interface. To create a notebook, a first-time user should select **Notebooks** from the left panel in Azure Machine Learning studio, and then select **Start with an empty notebook**. Azure Machine Learning studio offers additional options to upload existing notebooks, and to clone notebooks from a git repository.
129+
A Managed (Automatic) Spark compute is available in Azure Machine Learning Notebooks by default. To access it in a notebook, select **AzureML Spark Compute** under **Azure Machine Learning Spark** from the **Compute** selection menu.
130130

131-
:::image type="content" source="media/interactive-data-wrangling-with-apache-spark-azure-ml/start-with-an-empty-notebook.png" alt-text="Screenshot showing the Azure Notebooks tab.":::
132-
133-
To create and configure a Managed (Automatic) Spark compute in an open notebook:
134-
135-
1. Select the ellipses **(…)** next to the **Compute** selection menu.
136-
1. Select **+ Create Azure ML compute**. Sometimes, the ellipses may not appear. In this case, directly select the **+** icon next to the **Compute** selection menu.
137-
138-
:::image type="content" source="media/interactive-data-wrangling-with-apache-spark-azure-ml/create-azure-ml-compute-resource-in-a-notebook.png" alt-text="Screenshot highlighting the Create Azure ML compute option of a specific Azure Notebook tab.":::
139-
140-
1. Select **Azure Machine Learning Spark**.
141-
1. Select **Create**.
142-
143-
:::image type="content" source="media/interactive-data-wrangling-with-apache-spark-azure-ml/add-azure-machine-learning-spark-compute-type.png" alt-text="Screenshot highlighting the Azure Machine Learning Spark option at the Add new compute type screen.":::
144-
145-
1. Under **Azure Machine Learning Spark**, select **AzureML Spark Compute** from the **Compute** selection menu
146-
147-
:::image type="content" source="media/interactive-data-wrangling-with-apache-spark-azure-ml/select-azure-ml-spark-compute.png" alt-text="Screenshot highlighting the selected Azure Machine Learning Spark option at the Add new compute type screen.":::
131+
:::image type="content" source="media/interactive-data-wrangling-with-apache-spark-azure-ml/select-azure-ml-spark-compute.png" alt-text="Screenshot highlighting the selected Azure Machine Learning Spark option at the Compute selection menu.":::
148132

149133
The Notebooks UI also provides options for Spark session configuration, for the Managed (Automatic) Spark compute. To configure a Spark session:
150134

0 commit comments

Comments
 (0)