@@ -115,7 +115,7 @@ from azure.ai.ml.entities import (
115115 CodeConfiguration,
116116 Environment,
117117)
118- from azure.identity import DefaultAzureCredential, AzureCliCredential
118+ from azure.identity import AzureCliCredential
119119```
120120
121121Set up variables for the workspace and endpoint:
@@ -185,7 +185,7 @@ To debug online endpoints locally in VS Code, set the `vscode-debug` and `local`
185185deployment = ManagedOnlineDeployment(
186186 name = " blue" ,
187187 endpoint_name = endpoint_name,
188- model = Model(path = " ../model-1/model" ),
188+ model = Model(path = " ../model-1/model/sklearn_regression_model.pkl " ),
189189 code_configuration = CodeConfiguration(
190190 code = " ../model-1/onlinescoring" , scoring_script = " score.py"
191191 ),
@@ -198,9 +198,7 @@ deployment = ManagedOnlineDeployment(
198198)
199199
200200deployment = ml_client.online_deployments.begin_create_or_update(
201- deployment,
202- local = True ,
203- vscode_debug = True ,
201+ deployment, local = True , vscode_debug = True
204202)
205203```
206204
@@ -320,7 +318,7 @@ endpoint = ml_client.online_endpoints.get(name=endpoint_name, local=True)
320318
321319request_file_path = "../model-1/sample-request.json"
322320
323- endpoint .invoke(endpoint_name, request_file_path, local=True)
321+ ml_client.online_endpoints .invoke(endpoint_name, request_file_path, local=True)
324322```
325323
326324In this case, ` <REQUEST-FILE> ` is a JSON file that contains input data samples for the model to make predictions on similar to the following JSON:
@@ -336,8 +334,7 @@ In this case, `<REQUEST-FILE>` is a JSON file that contains input data samples f
336334> The scoring URI is the address where your endpoint listens for requests. The ` as_dict ` method of endpoint objects returns information similar to ` show ` in the Azure CLI. The endpoint object can be obtained through ` .get ` .
337335>
338336> ``` python
339- > endpoint = ml_client.online_endpoints.get(endpoint_name, local = True )
340- > endpoint.as_dict()
337+ > print (endpoint)
341338> ```
342339>
343340> The output should look similar to the following:
@@ -404,19 +401,22 @@ For more extensive changes involving updates to your environment and endpoint co
404401new_deployment = ManagedOnlineDeployment(
405402 name = " green" ,
406403 endpoint_name = endpoint_name,
407- model = Model(path = " ../model-2/model" ),
404+ model = Model(path = " ../model-2/model/sklearn_regression_model.pkl " ),
408405 code_configuration = CodeConfiguration(
409406 code = " ../model-2/onlinescoring" , scoring_script = " score.py"
410407 ),
411408 environment = Environment(
412- conda_file = " ../model-2 /environment/conda.yml" ,
409+ conda_file = " ../model-1 /environment/conda.yml" ,
413410 image = " mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20210727.v1" ,
414411 ),
415412 instance_type = " Standard_DS2_v2" ,
416413 instance_count = 2 ,
417414)
418415
419- ml_client.online_deployments.update(new_deployment, local = True , vscode_debug = True )
416+
417+ deployment = ml_client.online_deployments.begin_create_or_update(
418+ new_deployment, local = True , vscode_debug = True
419+ )
420420```
421421
422422Once the updated image is built and your development container launches, use the VS Code debugger to test and troubleshoot your updated endpoint.
0 commit comments