Skip to content

Commit a223288

Browse files
Merge pull request #270691 from wmwxwa/patch-2
Update vector-database.md
2 parents 2067ad4 + 2181e47 commit a223288

File tree

1 file changed

+12
-10
lines changed

1 file changed

+12
-10
lines changed

articles/cosmos-db/vector-database.md

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -22,9 +22,9 @@ The importance of data consistency, scale, and performance is why OpenAI built i
2222

2323
| | Description |
2424
| --- | --- |
25-
| **[Azure Cosmos DB for Mongo DB vCore](#how-to-implement-vector-database-functionalities-using-our-api-for-mongodb-vcore)** | Store your application data and vector embeddings together in a single MongoDB-compatible service featuring natively integrated vector database. |
26-
| **[Azure Cosmos DB for PostgreSQL](#how-to-implement-vector-database-functionalities-using-our-api-for-postgresql)** | Store your data and vectors together in a scalable PostgreSQL offering with natively integrated vector database. |
27-
| **[Azure Cosmos DB for NoSQL with Azure AI Search](#how-to-implement-vector-database-functionalities-using-our-nosql-api-and-ai-search)** | Augment your Azure Cosmos DB data with semantic and vector search capabilities of Azure AI Search. |
25+
| **[Azure Cosmos DB for Mongo DB vCore](#api-for-mongodb)** | Store your application data and vector embeddings together in a single MongoDB-compatible service featuring natively integrated vector database. |
26+
| **[Azure Cosmos DB for PostgreSQL](#api-for-postgresql)** | Store your data and vectors together in a scalable PostgreSQL offering with natively integrated vector database. |
27+
| **[Azure Cosmos DB for NoSQL](#nosql-api)** | Augment your Azure Cosmos DB data with semantic and vector search capabilities of Azure AI Search. |
2828

2929
## What is a vector database?
3030

@@ -58,11 +58,13 @@ This process involves extracting pertinent information from a custom data source
5858

5959
Here are multiple ways to implement RAG on your data by using our vector database functionalities:
6060

61-
## How to implement vector database functionalities using our API for MongoDB vCore
61+
## How to implement vector database functionalities
6262

63-
Use the natively integrated vector database in [Azure Cosmos DB for MongoDB vCore](mongodb/vcore/vector-search.md), which offers an efficient way to store, index, and search high-dimensional vector data directly alongside other application data. This approach removes the necessity of migrating your data to costlier alternative vector databases and provides a seamless integration of your AI-driven applications.
63+
### API for MongoDB
6464

65-
### Vector database implementation code samples
65+
Use the natively [integrated vector database in Azure Cosmos DB for MongoDB vCore](mongodb/vcore/vector-search.md), which offers an efficient way to store, index, and search high-dimensional vector data directly alongside other application data. This approach removes the necessity of migrating your data to costlier alternative vector databases and provides a seamless integration of your AI-driven applications.
66+
67+
### Code samples
6668

6769
- [.NET RAG Pattern retail reference solution](https://github.com/Azure/Vector-Search-AI-Assistant-MongoDBvCore)
6870
- [.NET tutorial - recipe chatbot](https://github.com/microsoft/AzureDataRetrievalAugmentedGenerationSamples/tree/main/C%23/CosmosDB-MongoDBvCore)
@@ -72,19 +74,19 @@ Use the natively integrated vector database in [Azure Cosmos DB for MongoDB vCor
7274
- [Python - LlamaIndex integration](https://docs.llamaindex.ai/en/stable/examples/vector_stores/AzureCosmosDBMongoDBvCoreDemo.html)
7375
- [Python - Semantic Kernel memory integration](https://github.com/microsoft/semantic-kernel/tree/main/python/semantic_kernel/connectors/memory/azure_cosmosdb)
7476

75-
## How to implement vector database functionalities using our API for PostgreSQL
77+
### API for PostgreSQL
7678

7779
Use the natively integrated vector database in [Azure Cosmos DB for PostgreSQL](postgresql/howto-use-pgvector.md), which offers an efficient way to store, index, and search high-dimensional vector data directly alongside other application data. This approach removes the necessity of migrating your data to costlier alternative vector databases and provides a seamless integration of your AI-driven applications.
7880

79-
### Vector database implementation code samples
81+
### Code samples
8082

8183
- Python: [Python notebook tutorial - food review chatbot](https://github.com/microsoft/AzureDataRetrievalAugmentedGenerationSamples/tree/main/Python/CosmosDB-PostgreSQL_CognitiveSearch)
8284

83-
## How to implement vector database functionalities using our NoSQL API and AI Search
85+
### NoSQL API
8486

8587
The natively integrated vector database in our NoSQL API will become available in mid-2024. In the meantime, you may implement RAG patterns with Azure Cosmos DB for NoSQL and [Azure AI Search](../search/vector-search-overview.md). This approach enables powerful integration of your data residing in the NoSQL API into your AI-oriented applications.
8688

87-
### Vector database implementation code samples
89+
### Code samples
8890

8991
- [.NET tutorial - Build and Modernize AI Applications](https://github.com/Azure/Build-Modern-AI-Apps-Hackathon)
9092
- [.NET tutorial - Bring Your Data to ChatGPT](https://github.com/Azure/Vector-Search-AI-Assistant/tree/cognitive-search-vector)

0 commit comments

Comments
 (0)