Skip to content

Commit aaba2c9

Browse files
authored
Merge pull request #188804 from MicrosoftDocs/main
2/16 AM Publish
2 parents 5c792a5 + 195835c commit aaba2c9

File tree

1 file changed

+30
-0
lines changed

1 file changed

+30
-0
lines changed

articles/machine-learning/how-to-manage-workspace-cli.md

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -102,6 +102,9 @@ az ml workspace create -w <workspace-name> -g <resource-group-name>
102102
```
103103

104104
# [Bring existing resources (1.0 CLI)](#tab/bringexistingresources1)
105+
106+
[!INCLUDE [cli v1](../../includes/machine-learning-cli-v1.md)]
107+
105108
To create a workspace that uses existing resources, you must provide the resource ID for each resource. You can get this ID either via the 'properties' tab on each resource via the Azure portal, or by running the following commands using the Azure CLI.
106109

107110
* **Azure Storage Account**:
@@ -125,6 +128,8 @@ az ml workspace create -w <workspace-name>
125128

126129
# [Bring existing resources (2.0 CLI - preview)](#tab/bringexistingresources2)
127130

131+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
132+
128133
To create a new workspace while bringing existing associated resources using the CLI, you will first have to define how your workspace should be configured in a configuration file.
129134

130135
:::code language="YAML" source="~/azureml-examples-main/cli/resources/workspace/with-existing-resources.yml":::
@@ -184,6 +189,8 @@ Dependent on your use case and organizational requirements, you can choose to co
184189

185190
# [1.0 CLI](#tab/vnetpleconfigurationsv1cli)
186191

192+
[!INCLUDE [cli v1](../../includes/machine-learning-cli-v1.md)]
193+
187194
If you want to restrict access to your workspace to a virtual network, you can use the following parameters as part of the `az ml workspace create` command or use the `az ml workspace private-endpoint` commands.
188195

189196
```azurecli-interactive
@@ -206,6 +213,8 @@ For more details on how to use these commands, see the [CLI reference pages](/cl
206213

207214
# [2.0 CLI - preview](#tab/vnetpleconfigurationsv2cli)
208215

216+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
217+
209218
When using private link, your workspace cannot use Azure Container Registry tasks compute for image building. Hence, you must set the image_build_compute property to a CPU compute cluster name to use for Docker image environment building. You can also specify whether the private link workspace should be accessible over the internet using the public_network_access property.
210219

211220
:::code language="YAML" source="~/azureml-examples-main/cli/resources/workspace/privatelink.yml":::
@@ -280,6 +289,8 @@ Below CLI commands provide examples for creating a workspace that uses customer-
280289

281290
# [1.0 CLI](#tab/vnetpleconfigurationsv1cli)
282291

292+
[!INCLUDE [cli v1](../../includes/machine-learning-cli-v1.md)]
293+
283294
Use the `--cmk-keyvault` parameter to specify the Azure Key Vault that contains the key, and `--resource-cmk-uri` to specify the resource ID and uri of the key within the vault.
284295

285296
To [limit the data that Microsoft collects](./concept-data-encryption.md#encryption-at-rest) on your workspace, you can additionally specify the `--hbi-workspace` parameter.
@@ -294,6 +305,8 @@ az ml workspace create -w <workspace-name>
294305

295306
# [2.0 CLI - preview](#tab/vnetpleconfigurationsv2cli)
296307

308+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
309+
297310
Use the `customer_managed_key` parameter and containing `key_vault` and `key_uri` parameters, to specify the resource ID and uri of the key within the vault.
298311

299312
To [limit the data that Microsoft collects](./concept-data-encryption.md#encryption-at-rest) on your workspace, you can additionally specify the `hbi_workspace` property.
@@ -326,12 +339,16 @@ To get information about a workspace, use the following command:
326339

327340
# [1.0 CLI](#tab/workspaceupdatev1)
328341

342+
[!INCLUDE [cli v1](../../includes/machine-learning-cli-v1.md)]
343+
329344
```azurecli-interactive
330345
az ml workspace show -w <workspace-name> -g <resource-group-name>
331346
```
332347

333348
# [2.0 CLI - preview](#tab/workspaceupdatev2)
334349

350+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
351+
335352
```azurecli-interactive
336353
az ml workspace show -n <workspace-name> -g <resource-group-name>
337354
```
@@ -346,12 +363,16 @@ To update a workspace, use the following command:
346363

347364
# [1.0 CLI](#tab/workspaceupdatev1)
348365

366+
[!INCLUDE [cli v1](../../includes/machine-learning-cli-v1.md)]
367+
349368
```azurecli-interactive
350369
az ml workspace update -w <workspace-name> -g <resource-group-name>
351370
```
352371

353372
# [2.0 CLI - preview](#tab/workspaceupdatev2)
354373

374+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
375+
355376
```azurecli-interactive
356377
az ml workspace update -n <workspace-name> -g <resource-group-name>
357378
```
@@ -367,12 +388,16 @@ If you change access keys for one of the resources used by your workspace, it ta
367388

368389
# [1.0 CLI](#tab/workspacesynckeysv1)
369390

391+
[!INCLUDE [cli v1](../../includes/machine-learning-cli-v1.md)]
392+
370393
```azurecli-interactive
371394
az ml workspace sync-keys -w <workspace-name> -g <resource-group-name>
372395
```
373396

374397
# [2.0 CLI - preview](#tab/workspacesynckeysv2)
375398

399+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
400+
376401
```azurecli-interactive
377402
az ml workspace sync-keys -n <workspace-name> -g <resource-group-name>
378403
```
@@ -391,12 +416,17 @@ To delete a workspace after it is no longer needed, use the following command:
391416

392417
# [1.0 CLI](#tab/workspacedeletev1)
393418

419+
420+
[!INCLUDE [cli v1](../../includes/machine-learning-cli-v1.md)]
421+
394422
```azurecli-interactive
395423
az ml workspace delete -w <workspace-name> -g <resource-group-name>
396424
```
397425

398426
# [2.0 CLI - preview](#tab/workspacedeletev2)
399427

428+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
429+
400430
```azurecli-interactive
401431
az ml workspace delete -n <workspace-name> -g <resource-group-name>
402432
```

0 commit comments

Comments
 (0)