Skip to content

Commit ae8145e

Browse files
author
msebolt
committed
bash fix
1 parent 7193c96 commit ae8145e

File tree

7 files changed

+23
-23
lines changed

7 files changed

+23
-23
lines changed

articles/machine-learning/data-science-virtual-machine/dsvm-secure-access-keys.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ az keyvault set-policy --object-id <Principal ID of the DSVM from previous step>
4545

4646
## Access a secret in the key vault from the DSVM
4747

48-
```cmd
48+
```bash
4949
# Get the access token for the VM.
5050
x=`curl http://localhost:50342/oauth2/token --data "resource=https://vault.azure.net" -H Metadata:true`
5151
token=`echo $x | python -c "import sys, json; print(json.load(sys.stdin)['access_token'])"`
@@ -56,7 +56,7 @@ curl https://<Vault Name>.vault.azure.net/secrets/SQLPasswd?api-version=2016-10-
5656

5757
## Access storage keys from the DSVM
5858

59-
```cmd
59+
```bash
6060
# Prerequisite: You have granted your VMs MSI access to use storage account access keys based on instructions at https://docs.microsoft.com/azure/active-directory/managed-service-identity/tutorial-linux-vm-access-storage. This article describes the process in more detail.
6161

6262
y=`curl http://localhost:50342/oauth2/token --data "resource=https://management.azure.com/" -H Metadata:true`

articles/machine-learning/how-to-configure-environment.md

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -112,13 +112,13 @@ To use the DSVM as a development environment:
112112
113113
* For Ubuntu DSVM:
114114
115-
```cmd
115+
```bash
116116
conda activate py36
117117
```
118118
119119
* For Windows DSVM:
120120
121-
```cmd
121+
```bash
122122
conda activate AzureML
123123
```
124124
@@ -143,35 +143,35 @@ When you're using a local computer (which might also be a remote virtual machine
143143
144144
Run the following command to create the environment.
145145
146-
```cmd
146+
```bash
147147
conda create -n myenv python=3.6.5
148148
```
149149
150150
Then activate the environment.
151151
152-
```cmd
152+
```bash
153153
conda activate myenv
154154
```
155155
156156
This example creates an environment using python 3.6.5, but any specific subversions can be chosen. SDK compatibility may not be guaranteed with certain major versions (3.5+ is recommended), and it's recommended to try a different version/subversion in your Anaconda environment if you run into errors. It will take several minutes to create the environment while components and packages are downloaded.
157157
158158
1. Run the following commands in your new environment to enable environment-specific IPython kernels. This will ensure expected kernel and package import behavior when working with Jupyter Notebooks within Anaconda environments:
159159
160-
```cmd
160+
```bash
161161
conda install notebook ipykernel
162162
```
163163
164164
Then run the following command to create the kernel:
165165
166-
```cmd
166+
```bash
167167
ipython kernel install --user --name myenv --display-name "Python (myenv)"
168168
```
169169
170170
1. Use the following commands to install packages:
171171
172172
This command installs the base Azure Machine Learning SDK with notebook and `automl` extras. The `automl` extra is a large install, and can be removed from the brackets if you don't intend to run automated machine learning experiments. The `automl` extra also includes the Azure Machine Learning Data Prep SDK by default as a dependency.
173173
174-
```cmd
174+
```bash
175175
pip install azureml-sdk[notebooks,automl]
176176
```
177177
@@ -190,13 +190,13 @@ When you're using a local computer (which might also be a remote virtual machine
190190
191191
Use either of the following commands and replace *\<new package>* with the package you want to install. Installing packages via `conda install` requires that the package is part of the current channels (new channels can be added in Anaconda Cloud).
192192
193-
```cmd
193+
```bash
194194
conda install <new package>
195195
```
196196
197197
Alternatively, you can install packages via `pip`.
198198
199-
```cmd
199+
```bash
200200
pip install <new package>
201201
```
202202
@@ -210,19 +210,19 @@ To enable these components in your Jupyter Notebook environment:
210210
211211
1. Open an Anaconda prompt and activate your environment.
212212
213-
```cmd
213+
```bash
214214
conda activate myenv
215215
```
216216
217217
1. Clone [the GitHub repository](https://aka.ms/aml-notebooks) for a set of sample notebooks.
218218
219-
```cmd
219+
```bash
220220
git clone https://github.com/Azure/MachineLearningNotebooks.git
221221
```
222222
223223
1. Launch the Jupyter Notebook server with the following command:
224224
225-
```cmd
225+
```bash
226226
jupyter notebook
227227
```
228228

articles/machine-learning/how-to-deploy-fpga-web-service.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ You can deploy a model as a web service on FPGAs with Azure Machine Learning Har
110110
111111
- The Python SDK for hardware-accelerated models:
112112
113-
```cmd
113+
```bash
114114
pip install --upgrade azureml-accel-models
115115
```
116116

articles/machine-learning/resource-known-issues.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -55,7 +55,7 @@ pip install --upgrade azureml-sdk[notebooks,automl] --ignore-installed PyYAML
5555
Anaconda's Python 3.7.4 distribution has a bug that breaks azureml-sdk install. This issue is discussed in this [GitHub Issue](https://github.com/ContinuumIO/anaconda-issues/issues/11195)
5656
This can be worked around by creating a new Conda Environment using this command:
5757

58-
```cmd
58+
```bash
5959
conda create -n <env-name> python=3.7.3
6060
```
6161

@@ -156,7 +156,7 @@ If you see this error when you use automated machine learning:
156156

157157
1. Run this command to install two packages in your Azure Databricks cluster:
158158

159-
```cmd
159+
```bash
160160
scikit-learn==0.19.1
161161
pandas==0.22.0
162162
```
@@ -249,7 +249,7 @@ compute_target.wait_for_completion(show_output=True)
249249

250250
If you no longer have the SSL certificate and private key, or you are using a certificate generated by Azure Machine Learning, you can retrieve the files prior to detaching the cluster by connecting to the cluster using `kubectl` and retrieving the secret `azuremlfessl`.
251251

252-
```cmd
252+
```bash
253253
kubectl get secret/azuremlfessl -o yaml
254254
```
255255

articles/mariadb/tutorial-design-database-using-portal.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ Use the [mysql command-line tool](https://dev.mysql.com/doc/refman/5.7/en/mysql.
9696

9797
Enter the command to connect:
9898

99-
```cmd
99+
```bash
100100
mysql -h mydemoserver.mariadb.database.azure.com -u myadmin@mydemoserver -p
101101
```
102102

includes/aml-dsvm-server.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ ms.date: 01/25/2019
1515

1616
1. Clone [the GitHub repository](https://aka.ms/aml-notebooks).
1717

18-
```cmd
18+
```bash
1919
git clone https://github.com/Azure/MachineLearningNotebooks.git
2020
```
2121

@@ -29,6 +29,6 @@ ms.date: 01/25/2019
2929

3030
1. Start the notebook server from your cloned directory.
3131

32-
```cmd
32+
```bash
3333
jupyter notebook
3434
```

includes/aml-your-server.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,12 +19,12 @@ ms.date: 09/26/2019
1919

2020
1. Clone [the GitHub repository](https://aka.ms/aml-notebooks).
2121

22-
```cmd
22+
```bash
2323
git clone https://github.com/Azure/MachineLearningNotebooks.git
2424
```
2525

2626
1. Start the notebook server from your cloned directory.
2727

28-
```cmd
28+
```bash
2929
jupyter notebook
3030
```

0 commit comments

Comments
 (0)