Skip to content

Commit ae8c536

Browse files
authored
Merge pull request #224710 from msakande/online-endpoint-deployment-add-studio-tab
Online endpoint deployment article - add studio tab
2 parents 47e04df + d94a7c2 commit ae8c536

10 files changed

+440
-242
lines changed

articles/machine-learning/how-to-deploy-online-endpoints.md

Lines changed: 439 additions & 241 deletions
Large diffs are not rendered by default.
49.5 KB
Loading
63.5 KB
Loading
92 KB
Loading
201 KB
Loading
105 KB
Loading
90.1 KB
Loading
34.2 KB
Loading
27.8 KB
Loading

articles/machine-learning/reference-managed-online-endpoints-vm-sku-list.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -30,4 +30,4 @@ This table shows the VM SKUs that are supported for Azure Machine Learning manag
3030
| X-Large| - | Standard_F32s_v2 <br/> Standard_F48s_v2 <br/> Standard_F64s_v2 <br/> Standard_F72s_v2 <br/> Standard_FX24mds <br/> Standard_FX36mds <br/> Standard_FX48mds| Standard_E32s_v3 <br/> Standard_E48s_v3 <br/> Standard_E64s_v3 | Standard_ND40rs_v2 <br/> Standard_ND96asr_v4 <br/> Standard_ND96amsr_A100_v4 <br/>|
3131

3232
> [!CAUTION]
33-
> `Standard_DS1_v2` and `Standard_F2s_v2` may be too small for bigger models and may lead to container termination due to insufficient memory, not enough space on the disk, or probe failure as it takes too long to initiate the container. If you want to reduce the cost of deploying multiple models with managed online endpoint, see [the example for multi models](how-to-deploy-online-endpoints.md#use-more-than-one-model). If you face [OutOfQuota errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-outofquota) or [ReourceNotReady errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-resourcenotready), try bigger VM SKUs.
33+
> `Standard_DS1_v2` and `Standard_F2s_v2` may be too small for bigger models and may lead to container termination due to insufficient memory, not enough space on the disk, or probe failure as it takes too long to initiate the container. If you want to reduce the cost of deploying multiple models with managed online endpoint, see [the example for multi models](how-to-deploy-online-endpoints.md#use-more-than-one-model-in-a-deployment). If you face [OutOfQuota errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-outofquota) or [ReourceNotReady errors](how-to-troubleshoot-online-endpoints.md?tabs=cli#error-resourcenotready), try bigger VM SKUs.

0 commit comments

Comments
 (0)