You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/iot-operations/connect-to-cloud/howto-configure-adlsv2-endpoint.md
+1-77Lines changed: 1 addition & 77 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -5,7 +5,7 @@ author: PatAltimore
5
5
ms.author: patricka
6
6
ms.subservice: azure-data-flows
7
7
ms.topic: how-to
8
-
ms.date: 09/23/2024
8
+
ms.date: 10/02/2024
9
9
ai-usage: ai-assisted
10
10
11
11
#CustomerIntent: As an operator, I want to understand how to configure dataflow endpoints for Azure Data Lake Storage Gen2 in Azure IoT Operations so that I can send data to Azure Data Lake Storage Gen2.
@@ -27,28 +27,6 @@ To send data to Azure Data Lake Storage Gen2 in Azure IoT Operations Preview, yo
27
27
28
28
To configure a dataflow endpoint for Azure Data Lake Storage Gen2, we suggest using the managed identity of the Azure Arc-enabled Kubernetes cluster. This approach is secure and eliminates the need for secret management. Alternatively, you can authenticate with the storage account using an access token. When using an access token, you would need to create a Kubernetes secret containing the SAS token.
29
29
30
-
# [Portal](#tab/portal)
31
-
32
-
1. In the operations experience portal, select the **Dataflow endpoints** tab.
33
-
1. Under **Create new dataflow endpoint**, select **Azure Data Lake Storage (2nd generation)** > **New**.
34
-
35
-
:::image type="content" source="media/howto-configure-adlsv2-endpoint/create-adls-endpoint.png" alt-text="Screenshot using operations experience portal to create a new ADLS V2 dataflow endpoint.":::
| Host | The hostname of the Azure Data Lake Storage Gen2 endpoint in the format `<account>.blob.core.windows.net`. Replace the account placeholder with the endpoint account name. |
43
-
| Authentication method | The method used for authentication. Choose *System assigned managed identity*, *User assigned managed identity*, or *Access token*. |
44
-
| Client ID | The client ID of the user-assigned managed identity. Required if using *User assigned managed identity*. |
45
-
| Tenant ID | The tenant ID of the user-assigned managed identity. Required if using *User assigned managed identity*. |
46
-
| Access token secret name | The name of the Kubernetes secret containing the SAS token. Required if using *Access token*. |
47
-
48
-
1. Select **Apply** to provision the endpoint.
49
-
50
-
# [Kubernetes](#tab/kubernetes)
51
-
52
30
### Use managed identity authentication
53
31
54
32
1. Get the managed identity of the Azure IoT Operations Preview Arc extension.
@@ -94,22 +72,10 @@ If you need to override the system-assigned managed identity audience, see the [
94
72
secretRef: my-sas
95
73
```
96
74
97
-
---
98
-
99
75
## Configure dataflow destination
100
76
101
77
Once the endpoint is created, you can use it in a dataflow by specifying the endpoint name in the dataflow's destination settings. The following example is a dataflow configuration that uses the MQTT endpoint for the source and Azure Data Lake Storage Gen2 as the destination. The source data is from the MQTT topics `thermostats/+/telemetry/temperature/#` and `humidifiers/+/telemetry/humidity/#`. The destination sends the data to Azure Data Lake Storage table `telemetryTable`.
102
78
103
-
# [Portal](#tab/portal)
104
-
105
-
1. In the Azure IoT Operations Preview portal, create a new dataflow or edit an existing dataflow by selecting the **Dataflows** tab on the left. If creating a new dataflow, select a source for the dataflow.
106
-
1. In the editor, select the destination dataflow endpoint.
107
-
1. Choose the Azure Data Lake Storage Gen2 endpoint that you created previously.
108
-
109
-
:::image type="content" source="media/howto-configure-adlsv2-endpoint/dataflow-mq-adls.png" alt-text="Screenshot using operations experience portal to create a dataflow with an MQTT source and ADLS V2 destination.":::
For more information about dataflow destination settings, see [Create a dataflow](howto-create-dataflow.md).
138
102
139
103
> [!NOTE]
@@ -151,14 +115,6 @@ Using the system-assigned managed identity is the recommended authentication met
151
115
152
116
Before creating the dataflow endpoint, assign a role to the managed identity that has write permission to the storage account. For example, you can assign the *Storage Blob Data Contributor* role. To learn more about assigning roles to blobs, see [Authorize access to blobs using Microsoft Entra ID](../../storage/blobs/authorize-access-azure-active-directory.md).
153
117
154
-
# [Portal](#tab/portal)
155
-
156
-
In the operations experience portal dataflow endpoint settings page, select the **Basic** tab then choose **Authentication method** > **System assigned managed identity**.
157
-
158
-
In most cases, you don't need to specify a service audience. Not specifying an audience creates a managed identity with the default audience scoped to your storage account.
159
-
160
-
# [Kubernetes](#tab/kubernetes)
161
-
162
118
In the *DataflowEndpoint* resource, specify the managed identity authentication method. In most cases, you don't need to specify other settings. Not specifying an audience creates a managed identity with the default audience scoped to your storage account.
163
119
164
120
```yaml
@@ -178,8 +134,6 @@ datalakeStorageSettings:
178
134
audience: https://<account>.blob.core.windows.net
179
135
```
180
136
181
-
---
182
-
183
137
#### Access token
184
138
185
139
Using an access token is an alternative authentication method. This method requires you to create a Kubernetes secret with the SAS token and reference the secret in the *DataflowEndpoint* resource.
In the operations experience portal dataflow endpoint settings page, select the **Basic** tab then choose **Authentication method** > **Access token**.
208
-
209
-
Enter the access token secret name you created in **Access token secret name**.
210
-
211
-
# [Kubernetes](#tab/kubernetes)
212
-
213
159
Create the *DataflowEndpoint* resource with the secret reference.
214
160
215
161
```yaml
@@ -220,18 +166,8 @@ datalakeStorageSettings:
220
166
secretRef: my-sas
221
167
```
222
168
223
-
---
224
-
225
169
#### User-assigned managed identity
226
170
227
-
# [Portal](#tab/portal)
228
-
229
-
In the operations experience portal dataflow endpoint settings page, select the **Basic** tab then choose **Authentication method** > **User assigned managed identity**.
230
-
231
-
Enter the user assigned managed identity client ID and tenant ID in the appropriate fields.
232
-
233
-
# [Kubernetes](#tab/kubernetes)
234
-
235
171
To use a user-assigned managed identity, specify the `UserAssignedManagedIdentity` authentication method and provide the `clientId` and `tenantId` of the managed identity.
236
172
237
173
```yaml
@@ -243,8 +179,6 @@ datalakeStorageSettings:
243
179
tenantId: <ID>
244
180
```
245
181
246
-
---
247
-
248
182
## Advanced settings
249
183
250
184
You can set advanced settings for the Azure Data Lake Storage Gen2 endpoint, such as the batching latency and message count.
@@ -258,14 +192,6 @@ Use the `batching` settings to configure the maximum number of messages and the
258
192
259
193
For example, to configure the maximum number of messages to 1000 and the maximum latency to 100 seconds, use the following settings:
260
194
261
-
# [Portal](#tab/portal)
262
-
263
-
In the operations experience portal, select the **Advanced** tab for the dataflow endpoint.
264
-
265
-
:::image type="content" source="media/howto-configure-adlsv2-endpoint/adls-advanced.png" alt-text="Screenshot using operations experience portal to set ADLS V2 advanced settings.":::
266
-
267
-
# [Kubernetes](#tab/kubernetes)
268
-
269
195
Set the values in the dataflow endpoint custom resource.
Copy file name to clipboardExpand all lines: articles/iot-operations/connect-to-cloud/howto-configure-adx-endpoint.md
-66Lines changed: 0 additions & 66 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -56,25 +56,6 @@ To send data to Azure Data Explorer in Azure IoT Operations Preview, you can con
56
56
57
57
Create the dataflow endpoint resource with your cluster and database information. We suggest using the managed identity of the Azure Arc-enabled Kubernetes cluster. This approach is secure and eliminates the need for secret management.
58
58
59
-
# [Portal](#tab/portal)
60
-
61
-
1. In the operations experience portal, select the **Dataflow endpoints** tab.
62
-
1. Under **Create new dataflow endpoint**, select **Azure Data Explorer** > **New**.
63
-
64
-
:::image type="content" source="media/howto-configure-adx-endpoint/create-adx-endpoint.png" alt-text="Screenshot using operations experience portal to create an Azure Data Explorer dataflow endpoint.":::
Once the endpoint is created, you can use it in a dataflow by specifying the endpoint name in the dataflow's destination settings.
99
78
100
-
# [Portal](#tab/portal)
101
-
102
-
1. In the Azure IoT Operations Preview portal, create a new dataflow or edit an existing dataflow by selecting the **Dataflows** tab on the left. If creating a new dataflow, select a source for the dataflow.
103
-
1. In the editor, select the destination dataflow endpoint.
104
-
1. Choose the Azure Data Explorer endpoint that you created previously.
105
-
106
-
:::image type="content" source="media/howto-configure-adx-endpoint/dataflow-mq-adx.png" alt-text="Screenshot using operations experience portal to create a dataflow with an MQTT source and a Azure Data Explorer destination.":::
107
-
108
-
1. Specify an output schema for the data. The schema must match the table schema in Azure Data Explorer. You can select an existing schema or upload a new schema to the schema registry.
For more information about dataflow destination settings, see [Create a dataflow](howto-create-dataflow.md).
138
102
139
103
> [!NOTE]
@@ -151,14 +115,6 @@ Using the system-assigned managed identity is the recommended authentication met
151
115
152
116
Before you create the dataflow endpoint, assign a role to the managed identity that grants permission to write to the Azure Data Explorer database. For more information on adding permissions, see [Manage Azure Data Explorer cluster permissions](/azure/data-explorer/manage-cluster-permissions).
153
117
154
-
# [Portal](#tab/portal)
155
-
156
-
In the operations experience portal dataflow endpoint settings page, select the **Basic** tab then choose **Authentication method** > **System assigned managed identity**.
157
-
158
-
In most cases, you don't need to specify a service audience. Not specifying an audience creates a managed identity with the default audience scoped to your storage account.
159
-
160
-
# [Kubernetes](#tab/kubernetes)
161
-
162
118
In the *DataflowEndpoint* resource, specify the managed identity authentication method. In most cases, you don't need to specify other settings. This configuration creates a managed identity with the default audience `https://api.kusto.windows.net`.
163
119
164
120
```yaml
@@ -178,18 +134,8 @@ dataExplorerSettings:
178
134
audience: https://<audience URL>
179
135
```
180
136
181
-
---
182
-
183
137
#### User-assigned managed identity
184
138
185
-
# [Portal](#tab/portal)
186
-
187
-
In the operations experience portal dataflow endpoint settings page, select the **Basic** tab then choose **Authentication method** > **User assigned managed identity**.
188
-
189
-
Enter the user assigned managed identity client ID and tenant ID in the appropriate fields.
190
-
191
-
# [Kubernetes](#tab/kubernetes)
192
-
193
139
To use a user-assigned managed identity, specify the `UserAssignedManagedIdentity` authentication method and provide the `clientId` and `tenantId` of the managed identity.
194
140
195
141
```yaml
@@ -201,8 +147,6 @@ dataExplorerSettings:
201
147
tenantId: <ID>
202
148
```
203
149
204
-
---
205
-
206
150
## Advanced settings
207
151
208
152
You can set advanced settings for the Azure Data Explorer endpoint, such as the batching latency and message count.
@@ -216,14 +160,6 @@ Use the `batching` settings to configure the maximum number of messages and the
216
160
217
161
For example, to configure the maximum number of messages to 1000 and the maximum latency to 100 seconds, use the following settings:
218
162
219
-
# [Portal](#tab/portal)
220
-
221
-
In the operations experience portal, select the **Advanced** tab for the dataflow endpoint.
222
-
223
-
:::image type="content" source="media/howto-configure-adx-endpoint/adx-advanced.png" alt-text="Screenshot using operations experience portal to set Azure Data Explorer advanced settings.":::
224
-
225
-
# [Kubernetes](#tab/kubernetes)
226
-
227
163
Set the values in the dataflow endpoint custom resource.
Copy file name to clipboardExpand all lines: articles/iot-operations/connect-to-cloud/howto-configure-dataflow-endpoint.md
+2-35Lines changed: 2 additions & 35 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -38,7 +38,7 @@ For example, you can use the default MQTT broker dataflow endpoint. You can use
38
38
39
39
# [Portal](#tab/portal)
40
40
41
-
:::image type="content" source="media/howto-configure-dataflow-endpoint/create-dataflow-mq-mq.png" alt-text="Screenshot using operations experience portalportal to create a dataflow from MQTT to MQTT.":::
41
+
:::image type="content" source="media/howto-configure-dataflow-endpoint/create-dataflow-mq-mq.png" alt-text="Screenshot using operations experience portal to create a dataflow from MQTT to MQTT.":::
42
42
43
43
# [Kubernetes](#tab/kubernetes)
44
44
@@ -94,40 +94,7 @@ spec:
94
94
95
95
---
96
96
97
-
Similar to the MQTT example, you can create multiple dataflows that use the same Kafka endpoint for different topics, or the same Data Lake endpoint for different tables, and so on.
97
+
Similar to the MQTT example, you can create multiple dataflows that use the same Kafka endpoint for different topics, or the same Data Lake endpoint for different tables.
98
98
99
-
## Manage dataflow endpoints
100
-
101
-
You can manage dataflow endpoints in the operations experience portal or by using the Kubernetes CLI.
102
-
103
-
:::image type="content" source="media/howto-configure-dataflow-endpoint/manage-dataflow-endpoints.png" alt-text="Screenshot using operations experience portal to view dataflow endpoint list.":::
104
-
105
-
106
-
### View
107
-
108
-
You can view the health, metrics, configuration, and associated dataflows of an endpoint in the operations experience portal.
109
-
110
-
111
-
<!-- TODO: link to relevant observability docs -->
112
-
113
-
### Edit
114
-
115
-
You can edit an endpoint in the operations experience portal. Be cautious if the endpoint is in use by a dataflow.
116
-
117
-
:::image type="content" source="media/howto-configure-dataflow-endpoint/edit-dataflow-endpoint.png" alt-text="Screenshot using operations experience portal to modify a dataflow":::
118
-
119
-
### Delete
120
-
121
-
You can delete an endpoint in the operations experience portal or using the `kubectl` command. Be cautious if the endpoint is in use by a dataflow.
122
-
123
-
# [Portal](#tab/portal)
124
-
125
-
:::image type="content" source="media/howto-configure-dataflow-endpoint/delete-dataflow-endpoint.png" alt-text="Screenshot using operations experience portal to delete a dataflow endpoint.":::
0 commit comments