You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Shelf Product Recognition (preview): Analyze shelf images using pretrained model
15
15
16
-
The fastest way to start using Product Recognition is to use the built-in pretrained AI models. With the Product Understanding API, you can upload a shelf image and get the locations of products and gaps.
16
+
The fastest way to start using Product Recognition is to use the built-in pretrained AI models. With the Product Recognition API, you can upload a shelf image and get the locations of products and gaps.
17
17
18
18
:::image type="content" source="../media/shelf/shelf-analysis-pretrained.png" alt-text="Photo of a retail shelf with products and gaps highlighted with rectangles.":::
19
19
@@ -51,62 +51,50 @@ To analyze a shelf image, do the following steps:
51
51
52
52
## Examine the response
53
53
54
-
A successful response is returned in JSON. The product understanding API results are returned in a `ProductUnderstandingResultApiModel` JSON field:
54
+
A successful response is returned in JSON. The product recognition API results are returned in a `ProductRecognitionResultApiModel` JSON field:
55
55
56
56
```json
57
-
{
58
-
"imageMetadata": {
59
-
"width": 2000,
60
-
"height": 1500
61
-
},
62
-
"products": [
63
-
{
64
-
"id": "string",
65
-
"boundingBox": {
66
-
"x": 1234,
67
-
"y": 1234,
68
-
"w": 12,
69
-
"h": 12
70
-
},
71
-
"classifications": [
72
-
{
73
-
"confidence": 0.9,
74
-
"label": "string"
75
-
}
76
-
]
77
-
}
57
+
"ProductRecognitionResultApiModel": {
58
+
"description": "Results from the product understanding operation.",
59
+
"required": [
60
+
"gaps",
61
+
"imageMetadata",
62
+
"products"
78
63
],
79
-
"gaps": [
80
-
{
81
-
"id": "string",
82
-
"boundingBox": {
83
-
"x": 1234,
84
-
"y": 1234,
85
-
"w": 123,
86
-
"h": 123
87
-
},
88
-
"classifications": [
89
-
{
90
-
"confidence": 0.8,
91
-
"label": "string"
92
-
}
93
-
]
64
+
"type": "object",
65
+
"properties": {
66
+
"imageMetadata": {
67
+
"$ref": "#/definitions/ImageMetadataApiModel"
68
+
},
69
+
"products": {
70
+
"description": "Products detected in the image.",
71
+
"type": "array",
72
+
"items": {
73
+
"$ref": "#/definitions/DetectedObject"
74
+
}
75
+
},
76
+
"gaps": {
77
+
"description": "Gaps detected in the image.",
78
+
"type": "array",
79
+
"items": {
80
+
"$ref": "#/definitions/DetectedObject"
81
+
}
94
82
}
95
-
]
83
+
}
96
84
}
97
85
```
98
86
99
87
See the following sections for definitions of each JSON field.
100
88
101
-
### Product Understanding Result API model
89
+
### Product Recognition Result API model
102
90
103
-
Results from the product understanding operation.
91
+
Results from the product recognition operation.
104
92
105
93
| Name | Type | Description | Required |
106
94
| ---- | ---- | ----------- | -------- |
107
95
|`imageMetadata`| [ImageMetadataApiModel](#image-metadata-api-model) | The image metadata information such as height, width and format. | Yes |
108
-
|`products`|[DetectedObjectApiModel](#detected-object-api-model) | Products detected in the image. | Yes |
109
-
|`gaps`| [DetectedObjectApiModel](#detected-object-api-model) | Gaps detected in the image. | Yes |
96
+
|`products`|[DetectedObject](#detected-object-api-model) | Products detected in the image. | Yes |
97
+
|`gaps`| [DetectedObject](#detected-object-api-model) | Gaps detected in the image. | Yes |
110
98
111
99
### Image Metadata API model
112
100
@@ -124,8 +112,8 @@ Describes a detected object in an image.
124
112
| Name | Type | Description | Required |
125
113
| ---- | ---- | ----------- | -------- |
126
114
|`id`| string | ID of the detected object. | No |
127
-
|`boundingBox`| [BoundingBoxApiModel](#bounding-box-api-model) | A bounding box for an area inside an image. | Yes |
128
-
|`classifications`| [ImageClassificationApiModel](#image-classification-api-model) | Classification confidences of the detected object. | Yes |
115
+
|`boundingBox`| [BoundingBox](#bounding-box-api-model) | A bounding box for an area inside an image. | Yes |
116
+
|`tags`| [TagsApiModel](#image-tags-api-model) | Classification confidences of the detected object. | Yes |
129
117
130
118
### Bounding Box API model
131
119
@@ -138,18 +126,18 @@ A bounding box for an area inside an image.
138
126
|`w`| integer | Width measured from the top-left point of the area, in pixels. | Yes |
139
127
|`h`| integer | Height measured from the top-left point of the area, in pixels. | Yes |
140
128
141
-
### Image Classification API model
129
+
### Image Tags API model
142
130
143
131
Describes the image classification confidence of a label.
144
132
145
133
| Name | Type | Description | Required |
146
134
| ---- | ---- | ----------- | -------- |
147
135
|`confidence`| float | Confidence of the classification prediction. | Yes |
148
-
|`label`| string | Label of the classification prediction. | Yes |
136
+
|`name`| string | Label of the classification prediction. | Yes |
149
137
150
138
## Next steps
151
139
152
-
In this guide, you learned how to make a basic analysis call using the pretrained Product Understanding REST API. Next, learn how to use a custom Product Recognition model to better meet your business needs.
140
+
In this guide, you learned how to make a basic analysis call using the pretrained Product Recognition REST API. Next, learn how to use a custom Product Recognition model to better meet your business needs.
153
141
154
142
> [!div class="nextstepaction"]
155
143
> [Train a custom model for Product Recognition](../how-to/shelf-model-customization.md)
0 commit comments