Skip to content

Commit b7a0b87

Browse files
fix link
1 parent 398b91c commit b7a0b87

File tree

1 file changed

+1
-1
lines changed

1 file changed

+1
-1
lines changed

articles/machine-learning/concept-automl-forecasting-methods.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ The following table lists the forecasting models implemented in AutoML and what
4646

4747
Time Series Models | Regression Models
4848
-------------------| -----------------
49-
[Naive, Seasonal Naive, Average, Seasonal Average](https://otexts.com/fpp3/simple-methods.html), [ARIMA(X)](https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html), [Exponential Smoothing](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html) | [Linear SGD](https://scikit-learn.org/stable/modules/linear_model.html#stochastic-gradient-descent-sgd), [LARS LASSO](https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso), [Elastic Net](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net), [Prophet](https://facebook.github.io/prophet/), [K Nearest Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression), [Decision Tree](https://scikit-learn.org/stable/modules/tree.html#regression), [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests), [Extremely Randomized Trees](https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees), [Gradient Boosted Trees](https://scikit-learn.org/stable/modules/ensemble.html#regression), [LightGBM](https://lightgbm.readthedocs.io/en/latest/index.html), [XGBoost](https://xgboost.readthedocs.io/en/latest/parameter.html), [TCNForecaster](./concept-automl-forecasting-deep-learning.md#tcnforecaster)
49+
[Naive, Seasonal Naive, Average, Seasonal Average](https://otexts.com/fpp3/simple-methods.html), [ARIMA(X)](https://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html), [Exponential Smoothing](https://www.statsmodels.org/dev/generated/statsmodels.tsa.holtwinters.ExponentialSmoothing.html) | [Linear SGD](https://scikit-learn.org/stable/modules/linear_model.html#stochastic-gradient-descent-sgd), [LARS LASSO](https://scikit-learn.org/stable/modules/linear_model.html#lars-lasso), [Elastic Net](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net), [Prophet](https://facebook.github.io/prophet/), [K Nearest Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-regression), [Decision Tree](https://scikit-learn.org/stable/modules/tree.html#regression), [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests), [Extremely Randomized Trees](https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees), [Gradient Boosted Trees](https://scikit-learn.org/stable/modules/ensemble.html#regression), [LightGBM](https://lightgbm.readthedocs.io/en/latest/index.html), [XGBoost](https://xgboost.readthedocs.io/en/latest/parameter.html), [TCNForecaster](./concept-automl-forecasting-deep-learning.md#introduction-to-tcnforecaster)
5050

5151
The models in each category are listed roughly in order of the complexity of patterns they're able to incorporate, also known as the **model capacity**. A Naive model, which simply forecasts the last observed value, has low capacity while the Temporal Convolutional Network (TCNForecaster), a deep neural network with potentially millions of tunable parameters, has high capacity.
5252

0 commit comments

Comments
 (0)