Skip to content

Commit b8ff84b

Browse files
authored
change **forecasting_parameters
passing forecasting_parameters as mentioned previously in docs is not valid and return exception of type (TypeError: type object argument after ** must be a mapping, not ForecastingParameters. but on this tutorial, it's written correctly https://github.com/Azure/azureml-examples/blob/main/python-sdk/tutorials/automl-with-azureml/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb Therefore, I'm updating how it's being passed
1 parent 12b6d8d commit b8ff84b

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

articles/machine-learning/how-to-auto-train-forecast.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@ automl_config = AutoMLConfig(task='forecasting',
126126
cv_step_size = "auto", # Could be customized as an integer
127127
enable_ensembling=False,
128128
verbosity=logging.INFO,
129-
**forecasting_parameters)
129+
forecasting_parameters=forecasting_parameters)
130130
```
131131

132132
The amount of data required to successfully train a forecasting model with automated ML is influenced by the `forecast_horizon`, `n_cross_validations`, and `target_lags` or `target_rolling_window_size` values specified when you configure your `AutoMLConfig`.
@@ -229,7 +229,7 @@ To enable deep learning, set the `enable_dnn=True` in the `AutoMLConfig` object.
229229
automl_config = AutoMLConfig(task='forecasting',
230230
enable_dnn=True,
231231
...
232-
**forecasting_parameters)
232+
forecasting_parameters=forecasting_parameters)
233233
```
234234
> [!Warning]
235235
> When you enable DNN for experiments created with the SDK, [best model explanations](how-to-machine-learning-interpretability-automl.md) are disabled.

0 commit comments

Comments
 (0)