Skip to content

Commit b97e34e

Browse files
committed
Datasources
1 parent 77a40b3 commit b97e34e

File tree

1 file changed

+14
-19
lines changed

1 file changed

+14
-19
lines changed

articles/machine-learning/how-to-designer-import-data.md

Lines changed: 14 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: how-to
99

1010
author: peterclu
1111
ms.author: peterlu
12-
ms.date: 01/06/2020
12+
ms.date: 01/16/2020
1313
---
1414

1515
# Import your data into Azure Machine Learning designer (preview)
@@ -23,7 +23,7 @@ To learn more about the differences between datasets and datastores, see [Data a
2323

2424
## Import data using datasets
2525

26-
We recommend that you use [Azure Machine Learning datasets](concept-data.md#datasets) when you import data into the designer. When you register a dataset in Azure Machine Learning, you can take full advantage of advanced features like [versioning and tracking](how-to-version-track-datasets.md) and [data monitoring](how-to-monitor-datasets.md) to accelerate your machine learning workflows.
26+
We recommend that you use [Azure Machine Learning datasets](concept-data.md#datasets) when you import data into the designer. When you register a dataset, you can take full advantage of advanced data features like [versioning and tracking](how-to-version-track-datasets.md) and [data monitoring](how-to-monitor-datasets.md).
2727

2828

2929
### Register a dataset
@@ -51,7 +51,7 @@ Registered datasets can be found in the module palette, under **Datasets** > **M
5151

5252
## Import data using the Import Data module
5353

54-
You can also use the [Import Data](algorithm-module-reference/import-data.md) module to import data directly from Azure Machine Learning [datastores](concept-data.md#datastores) or HTTP URLs. However, we recommend you create a dataset first to take full advantage of features such as versioning and monitoring.
54+
You can also use the [Import Data](algorithm-module-reference/import-data.md) module to import data directly from either Azure Machine Learning [datastores](concept-data.md#datastores) or HTTP URLs. We recommend you create a dataset first to take full advantage of advanced data features like versioning and monitoring.
5555

5656
> [!NOTE]
5757
> Pipelines converted from the visual interface will default to the **Import Data** module. If you are using a converted visual interface pipeline, we recommend creating a dataset and importing data via the dataset method.
@@ -78,22 +78,15 @@ For more information on how to use the Import Data module, see its [algorithm mo
7878

7979
## Supported data sources
8080

81-
The designer supports the following datasources:
81+
There are two methods for importing data in the designer, this section lists the supported data sources for datastores and [tabular datasets](how-to-create-register-datasets.md#dataset-types).
8282

83-
* Azure Blob Container
84-
* Azure File Share
85-
* Azure Data Lake
86-
* Azure Data Lake Gen2
87-
* Azure SQL Database
88-
* Azure Database for PostgreSQL
89-
* Databricks File System
90-
* Azure Database for MySQL
91-
* Local file (TSV, CSV)
92-
* Web file (TSV, CSV)
83+
For a list of supported datastore sources, see [Access data in Azure storage services](how-to-access-data.md#supported-data-storage-service-types).
9384

94-
If you import data in a format such as ARFF that includes metadata, the designer uses this metadata to define the heading and data type of each column. If you import data such as TSV or CSV format that doesn't include this metadata, the designer infers the data type for each column by sampling the data.
95-
96-
You can explicitly specify or column headings and data types using the [Edit Metadata](algorithm-module-reference/edit-metadata.md) module.
85+
The designer supports tabular datasets created from the following sources:
86+
* Delimited files
87+
* JSON files
88+
* Parquet files
89+
* SQL queries
9790

9891
## Supported data types
9992

@@ -105,12 +98,14 @@ The designer recognizes the following data types:
10598
* Boolean
10699
* Date
107100

108-
The designer uses an internal data type called ***data table*** to pass data between modules. You can explicitly convert your data into data table format using the [Convert to Dataset][convert-to-dataset] module.
101+
The designer uses an internal data type to pass data between modules. You can explicitly convert your data into data table format using the [Convert to Dataset](algorithm-module-reference/convert-to-dataset.md) module.
109102

110103
Any module that accepts formats other than data table will convert the data to data table silently before passing it to the next module.
111104

112105
## Data capacities
113106

114107
Modules in Azure Machine Learning designer are limited by the size of the compute target. For larger datasets, you should use a larger Azure Machine Learning compute resource. For more information on Azure Machine Learning compute, see [What are compute targets in Azure Machine Learning?](concept-compute-target.md#azure-machine-learning-compute-managed)
115108

116-
## Next steps
109+
## Next steps
110+
111+
Learn the basics of the designer with [Tutorial: Predict automobile price with the designer](tutorial-designer-automobile-price-train-score.md)

0 commit comments

Comments
 (0)