@@ -19,185 +19,62 @@ This article lists the curated environments with latest framework versions in Az
19
19
> [ !NOTE]
20
20
> Use the [ Python SDK] ( how-to-use-environments.md ) , [ CLI] ( /cli/azure/ml/environment#az_ml_environment_list ) , or Azure Machine Learning [ studio] ( how-to-manage-environments-in-studio.md ) to get the full list of environments and their dependencies. For more information, see the [ environments article] ( how-to-use-environments.md#use-a-curated-environment ) .
21
21
22
+ ## Why should I use curated environments?
23
+
24
+ * Reduces training and deployment latency.
25
+ * Improves training and deployment success rate.
26
+ * Avoid unnecessary image builds.
27
+ * Only have required dependencies and access right in the image/container.
28
+
29
+ > [ !IMPORTANT]
30
+ > To see view more information about curated environment packages and versions, visit the Environments tab in the Azure Machine Learning studio.
31
+
22
32
## Training curated environments
23
33
24
34
### PyTorch
25
35
26
- ** Name** : AzureML-pytorch-1.10-ubuntu18.04-py38-cuda11-gpu
36
+ ** Name** : AzureML-pytorch-1.10-ubuntu18.04-py38-cuda11-gpu
27
37
** Description** : An environment for deep learning with PyTorch containing the AzureML Python SDK and other python packages.
28
-
29
- The following Dockerfile can be customized for your personal workflows.
30
-
31
- ``` dockerfile
32
- FROM mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.1-cudnn8-ubuntu18.04:20211221.v1
33
-
34
- ENV AZUREML_CONDA_ENVIRONMENT_PATH /azureml-envs/pytorch-1.10
35
-
36
- # Create conda environment
37
- RUN conda create -p $AZUREML_CONDA_ENVIRONMENT_PATH \
38
- python=3.8 \
39
- pip=20.2.4 \
40
- pytorch=1.10.0 \
41
- torchvision=0.11.1 \
42
- torchaudio=0.10.0 \
43
- cudatoolkit=11.1.1 \
44
- nvidia-apex=0.1.0 \
45
- gxx_linux-64 \
46
- -c anaconda -c pytorch -c conda-forge
47
-
48
- # Prepend path to AzureML conda environment
49
- ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH
50
-
51
- # Install pip dependencies
52
- RUN pip install 'matplotlib>=3.3,<3.4' \
53
- 'psutil>=5.8,<5.9' \
54
- 'tqdm>=4.59,<4.63' \
55
- 'pandas>=1.3,<1.4' \
56
- 'scipy>=1.5,<1.8' \
57
- 'numpy>=1.10,<1.22' \
58
- 'ipykernel~=6.0' \
59
- 'azureml-core==1.37.0.post1' \
60
- 'azureml-defaults==1.37.0' \
61
- 'azureml-mlflow==1.37.0' \
62
- 'azureml-telemetry==1.37.0' \
63
- 'tensorboard==2.6.0' \
64
- 'tensorflow-gpu==2.6.0' \
65
- 'onnxruntime-gpu>=1.7,<1.10' \
66
- 'horovod==0.23' \
67
- 'future==0.18.2' \
68
- 'torch-tb-profiler==0.3.1'
69
-
70
-
71
- # This is needed for mpi to locate libpython
72
- ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH
73
- ```
38
+ * GPU: Cuda11
39
+ * OS: Ubuntu18.04
40
+ * PyTorch: 1.10
74
41
75
42
Other available PyTorch environments:
76
43
* AzureML-pytorch-1.9-ubuntu18.04-py37-cuda11-gpu
77
44
* AzureML-pytorch-1.8-ubuntu18.04-py37-cuda11-gpu
78
45
* AzureML-pytorch-1.7-ubuntu18.04-py37-cuda11-gpu
79
46
47
+
80
48
### LightGBM
81
49
82
50
** Name** : AzureML-lightgbm-3.2-ubuntu18.04-py37-cpu
83
51
** Description** : An environment for machine learning with Scikit-learn, LightGBM, XGBoost, Dask containing the AzureML Python SDK and other packages.
52
+ * OS: Ubuntu18.04
53
+ * Dask: 2021.6
54
+ * LightGBM: 3.2
55
+ * Scikit-learn: 0.24
56
+ * XGBoost: 1.4
84
57
85
- The following Dockerfile can be customized for your personal workflows.
86
-
87
- ``` dockerfile
88
- FROM mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20211221.v1
89
-
90
- ENV AZUREML_CONDA_ENVIRONMENT_PATH /azureml-envs/lightgbm
91
-
92
- # Create conda environment
93
- RUN conda create -p $AZUREML_CONDA_ENVIRONMENT_PATH \
94
- python=3.7 pip=20.2.4
95
-
96
- # Prepend path to AzureML conda environment
97
- ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH
98
-
99
- # Install pip dependencies
100
- RUN HOROVOD_WITH_TENSORFLOW=1 \
101
- pip install 'matplotlib>=3.3,<3.4' \
102
- 'psutil>=5.8,<5.9' \
103
- 'tqdm>=4.59,<4.60' \
104
- 'pandas>=1.1,<1.2' \
105
- 'numpy>=1.10,<1.20' \
106
- 'scipy~=1.5.0' \
107
- 'scikit-learn~=0.24.1' \
108
- 'xgboost~=1.4.0' \
109
- 'lightgbm~=3.2.0' \
110
- 'dask~=2021.6.0' \
111
- 'distributed~=2021.6.0' \
112
- 'dask-ml~=1.9.0' \
113
- 'adlfs~=0.7.0' \
114
- 'ipykernel~=6.0' \
115
- 'azureml-core==1.37.0.post1' \
116
- 'azureml-defaults==1.37.0' \
117
- 'azureml-mlflow==1.37.0' \
118
- 'azureml-telemetry==1.37.0'
119
-
120
- # This is needed for mpi to locate libpython
121
- ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH
122
- ```
123
58
124
59
### Sklearn
125
- ** Name** : AzureML-sklearn-0.24-ubuntu18 .04-py37-cuda11-gpu
60
+ ** Name** : AzureML-sklearn-1.0-ubuntu20 .04-py38-cpu
126
61
** Description** : An environment for tasks such as regression, clustering, and classification with Scikit-learn. Contains the AzureML Python SDK and other python packages.
62
+ * OS: Ubuntu20.04
63
+ * Scikit-learn: 1.0
127
64
128
- The following Dockerfile can be customized for your personal workflows.
129
-
130
- ``` dockerfile
131
- FROM mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04:20211221.v1
132
-
133
- ENV AZUREML_CONDA_ENVIRONMENT_PATH /azureml-envs/sklearn-0.24.1
134
-
135
- # Create conda environment
136
- RUN conda create -p $AZUREML_CONDA_ENVIRONMENT_PATH \
137
- python=3.7 pip=20.2.4
138
-
139
- # Prepend path to AzureML conda environment
140
- ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH
141
-
142
- # Install pip dependencies
143
- RUN pip install 'matplotlib>=3.3,<3.4' \
144
- 'psutil>=5.8,<5.9' \
145
- 'tqdm>=4.59,<4.60' \
146
- 'pandas>=1.1,<1.2' \
147
- 'scipy>=1.5,<1.6' \
148
- 'numpy>=1.10,<1.20' \
149
- 'ipykernel~=6.0' \
150
- 'azureml-core==1.37.0.post1' \
151
- 'azureml-defaults==1.37.0' \
152
- 'azureml-mlflow==1.37.0' \
153
- 'azureml-telemetry==1.37.0' \
154
- 'scikit-learn==0.24.1'
65
+ Other available Sklearn environments:
66
+ * AzureML-sklearn-0.24-ubuntu18.04-py37-cpu
155
67
156
- # This is needed for mpi to locate libpython
157
- ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH
158
- ```
159
68
160
69
### TensorFlow
161
70
162
71
** Name** : AzureML-tensorflow-2.4-ubuntu18.04-py37-cuda11-gpu
163
72
** Description** : An environment for deep learning with TensorFlow containing the AzureML Python SDK and other python packages.
73
+ * GPU: Cuda11
74
+ * Horovod: 2.4.1
75
+ * OS: Ubuntu18.04
76
+ * TensorFlow: 2.4
164
77
165
- The following Dockerfile can be customized for your personal workflows.
166
-
167
- ``` dockerfile
168
- FROM mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.0.3-cudnn8-ubuntu18.04:20211221.v1
169
-
170
- ENV AZUREML_CONDA_ENVIRONMENT_PATH /azureml-envs/tensorflow-2.4
171
-
172
- # Create conda environment
173
- RUN conda create -p $AZUREML_CONDA_ENVIRONMENT_PATH \
174
- python=3.7 pip=20.2.4
175
-
176
- # Prepend path to AzureML conda environment
177
- ENV PATH $AZUREML_CONDA_ENVIRONMENT_PATH/bin:$PATH
178
-
179
- # Install pip dependencies
180
- RUN HOROVOD_WITH_TENSORFLOW=1 \
181
- pip install 'matplotlib>=3.3,<3.4' \
182
- 'psutil>=5.8,<5.9' \
183
- 'tqdm>=4.59,<4.60' \
184
- 'pandas>=1.1,<1.2' \
185
- 'scipy>=1.5,<1.6' \
186
- 'numpy>=1.10,<1.20' \
187
- 'ipykernel~=6.0' \
188
- 'azureml-core==1.37.0.post1' \
189
- 'azureml-defaults==1.37.0' \
190
- 'azureml-mlflow==1.37.0' \
191
- 'azureml-telemetry==1.37.0' \
192
- 'tensorboard==2.4.0' \
193
- 'tensorflow-gpu==2.4.1' \
194
- 'tensorflow-datasets==4.3.0' \
195
- 'onnxruntime-gpu>=1.7,<1.8' \
196
- 'horovod[tensorflow-gpu]==0.21.3'
197
-
198
- # This is needed for mpi to locate libpython
199
- ENV LD_LIBRARY_PATH $AZUREML_CONDA_ENVIRONMENT_PATH/lib:$LD_LIBRARY_PATH
200
- ```
201
78
202
79
## Automated ML (AutoML)
203
80
@@ -216,6 +93,6 @@ For more information on AutoML and Azure ML pipelines, see [use automated ML in
216
93
217
94
[ !INCLUDE [ list-of-inference-prebuilt-docker-images] ( ../../includes/aml-inference-list-prebuilt-docker-images.md )]
218
95
219
- ## Security
96
+ ## Support
220
97
Version updates for supported environments are released every two weeks to address vulnerabilities no older than 30 days.
221
98
0 commit comments