Skip to content

Commit be47ede

Browse files
committed
updated screenshots and text
1 parent f9df635 commit be47ede

File tree

7 files changed

+8
-8
lines changed

7 files changed

+8
-8
lines changed

articles/iot-hub/iot-hub-weather-forecast-machine-learning.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -56,7 +56,7 @@ In this section you get the weather prediction model from the Azure AI Gallery a
5656

5757
1. Click **Open in Studio (classic)** to open the model in Microsoft Azure Machine Learning Studio (classic).
5858

59-
![Open the weather prediction model in Azure Machine Learning Studio (classic)](media/iot-hub-weather-forecast-machine-learning/3_open-weather-prediction-model-in-azure-machine-learning-studio.png)
59+
![Open the weather prediction model in Azure Machine Learning Studio (classic)](media/iot-hub-weather-forecast-machine-learning/open-ml-studio.png)
6060

6161
### Add an R-script module to clean temperature and humidity data
6262

@@ -66,11 +66,11 @@ For the model to behave correctly, the temperature and humidity data must be con
6666

6767
![Select Execute R Script module](media/iot-hub-weather-forecast-machine-learning/select-r-script-module.png)
6868

69-
1. Drag the **Execute R Script** module near the **Clean Missing Data** module and the existing **Execute R Script** module on the experiment canvas. Connect the inputs and outputs as shown.
69+
1. Drag the **Execute R Script** module near the **Clean Missing Data** module and the existing **Execute R Script** module on the diagram. Delete the connection between the **Clean Missing Data** and the **Execute R Script** modules and then connect the inputs and outputs of the new module as shown.
7070

7171
![Add Execute R Script module](media/iot-hub-weather-forecast-machine-learning/add-r-script-module.png)
7272

73-
1. Select the new **Execute R Script** module to open its properties window. Copy and paste the following code into the **R Script** box. Make sure **CRAN R** is selected for the R version.
73+
1. Select the new **Execute R Script** module to open its properties window. Copy and paste the following code into the **R Script** box.
7474

7575
```r
7676
# Map 1-based optional input ports to variables
@@ -91,17 +91,17 @@ For the model to behave correctly, the temperature and humidity data must be con
9191

9292
### Deploy predictive web service
9393

94+
In this section, you validate the model, set up a predictive web service based on the model, and then deploy the web service.
95+
9496
1. Click **Run** to validate the steps in the model. This step might take a few minutes to complete.
9597

9698
![Run the experiment to validate the steps](media/iot-hub-weather-forecast-machine-learning/run-experiment.png)
9799

98-
1. Click **SET UP WEB SERVICE** > **Predictive Web Service**.
100+
1. Click **SET UP WEB SERVICE** > **Predictive Web Service**. The predictive experiment diagram opens.
99101

100102
![Deploy the weather prediction model in Azure Machine Learning Studio (classic)](media/iot-hub-weather-forecast-machine-learning/predictive-experiment.png)
101103

102-
1. In the diagram, drag the **Web service input** module somewhere near the **Score Model** module.
103-
104-
1. Connect the **Web service input** module to the **Score Model** module.
104+
1. In the diagram, delete the connection between the **Web service input** module and the **Weather Dataset** at the top. Then drag the **Web service input** module somewhere near the **Score Model** module and connect it as shown:
105105

106106
![Connect two modules in Azure Machine Learning Studio (classic)](media/iot-hub-weather-forecast-machine-learning/13_connect-modules-azure-machine-learning-studio.png)
107107

@@ -114,7 +114,7 @@ For the model to behave correctly, the temperature and humidity data must be con
114114
> [!Note]
115115
> Make sure that you download the **Excel 2010 or earlier workbook** even if you are running a later version of Excel on your computer.
116116
117-
![Download the Excel for the REQUEST RESPONSE endpoint](media/iot-hub-weather-forecast-machine-learning/5_download-endpoint-app-excel-for-request-response.png)
117+
![Download the Excel for the REQUEST RESPONSE endpoint](media/iot-hub-weather-forecast-machine-learning/download-workbook.png)
118118

119119
1. Open the Excel workbook, make a note of the **WEB SERVICE URL** and **ACCESS KEY**.
120120

-2.11 KB
Loading
67.4 KB
Loading
108 KB
Loading
8.42 KB
Loading
6.79 KB
Loading
-17.3 KB
Loading

0 commit comments

Comments
 (0)