Skip to content

Commit bff2e36

Browse files
authored
Merge pull request #94321 from MicrosoftDocs/release-ignite-synapse-analytics
Ignite
2 parents 50a5ae2 + 6e77912 commit bff2e36

17 files changed

+308
-197
lines changed

articles/index.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -190,7 +190,7 @@ featureFlags:
190190
<ul class="noBullet">
191191
<li><a class="barLink" href="/azure/sql-database/">SQL database as a service</a></li>
192192
<li><a class="barLink" href="/azure/virtual-machines/windows/sql/">SQL Server on an Azure VM</a></li>
193-
<li><a class="barLink" href="/azure/sql-data-warehouse/">SQL Data Warehouse as a service</a></li>
193+
<li><a class="barLink" href="/azure/sql-data-warehouse/">Synapse Analytics (formerly SQL DW)</a></li>
194194
<li><a class="barLink" href="/azure/postgresql/">PostgreSQL database as a service</a></li>
195195
<li><a class="barLink" href="/azure/mysql/">MySQL database as a service</a></li>
196196
</ul>
@@ -618,8 +618,8 @@ featureFlags:
618618
<ul>
619619
<li>
620620
<a href="/azure/sql-data-warehouse/">
621-
<img src="media/index/sqldatawarehouse.svg" alt="" />
622-
<p>SQL Data Warehouse</p>
621+
<img src="media/index/azure_synapse_icon.svg" alt="" />
622+
<p>Azure Synapse Analytics (formerly SQL DW)</p>
623623
</a>
624624
</li>
625625
<li>
@@ -900,8 +900,8 @@ featureFlags:
900900
</li>
901901
<li>
902902
<a href="/azure/sql-data-warehouse/">
903-
<img src="media/index/SQLDataWarehouse.svg" alt="" />
904-
<p>SQL Data Warehouse</p>
903+
<img src="media/index/azure_synapse_icon.svg" alt="" />
904+
<p>Azure Synapse Analytics (formerly SQL DW)</p>
905905
</a>
906906
</li>
907907
<li>
@@ -2251,12 +2251,12 @@ featureFlags:
22512251
<div class="card">
22522252
<div class="cardImageOuter">
22532253
<div class="cardImage">
2254-
<img src="media/index/sqldatawarehouse.svg" alt="" />
2254+
<img src="media/index/azure_synapse_icon.svg" alt="" />
22552255
</div>
22562256
</div>
22572257
<div class="cardText">
2258-
<h3>SQL Data Warehouse</h3>
2259-
<p>Elastic data warehouse as a service with enterprise-class features</p>
2258+
<h3>Azure Synapse Analytics (formerly SQL DW)</h3>
2259+
<p>Limitless analytics service with unmatched time to insight</p>
22602260
</div>
22612261
</div>
22622262
</div>
@@ -3221,12 +3221,12 @@ featureFlags:
32213221
<div class="card">
32223222
<div class="cardImageOuter">
32233223
<div class="cardImage">
3224-
<img src="media/index/SQLDataWarehouse.svg" alt="" />
3224+
<img src="media/index/azure_synapse_icon.svg" alt="" />
32253225
</div>
32263226
</div>
32273227
<div class="cardText">
3228-
<h3>SQL Data Warehouse</h3>
3229-
<p>Elastic data warehouse as a service with enterprise-class features</p>
3228+
<h3>Azure Synapse Analytics (formerly SQL DW)</h3>
3229+
<p>Limitless analytics service with unmatched time to insight</p>
32303230
</div>
32313231
</div>
32323232
</div>
Lines changed: 22 additions & 0 deletions
Loading

articles/sql-data-warehouse/TOC.yml

Lines changed: 17 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,10 @@
1-
- name: SQL Data Warehouse Documentation
1+
- name: Azure Synapse Analytics Documentation
22
href: index.yml
33
- name: Overview
44
items:
5-
- name: What is SQL Data Warehouse?
5+
- name: What is Azure Synapse Analytics?
66
href: sql-data-warehouse-overview-what-is.md
7-
- name: SQL Data Warehouse architecture
7+
- name: Azure Synapse Analytics architecture
88
href: massively-parallel-processing-mpp-architecture.md
99
- name: Data warehouse units
1010
href: what-is-a-data-warehouse-unit-dwu-cdwu.md
@@ -257,20 +257,22 @@
257257
href: sql-data-warehouse-encryption-tde-tsql.md
258258
- name: Load data
259259
items:
260-
- name: New York taxi cab data
261-
href: load-data-from-azure-blob-storage-using-polybase.md
262-
- name: Contoso public data
263-
href: sql-data-warehouse-load-from-azure-blob-storage-with-polybase.md
264-
- name: Azure Data Lake Storage
260+
- name: From Azure Data Lake Storage (ADLS)
265261
href: sql-data-warehouse-load-from-azure-data-lake-store.md
266-
- name: Azure Databricks
262+
- name: Using Azure Databricks (ADB)
267263
href: /azure/azure-databricks/databricks-extract-load-sql-data-warehouse?toc=/azure/sql-data-warehouse/toc.json&bc=/azure/sql-data-warehouse/breadcrumb/toc.json
268-
- name: Data Factory
264+
- name: Using Data Factory (ADF)
269265
href: /azure/data-factory/load-azure-sql-data-warehouse?toc=/azure/sql-data-warehouse/toc.json&bc=/azure/sql-data-warehouse/breadcrumb/toc.json
270-
- name: SSIS
266+
- name: Using SQL Server Integration Services (SSIS)
271267
href: /sql/integration-services/load-data-to-sql-data-warehouse
272-
- name: Load WideWorldImporters
273-
href: load-data-wideworldimportersdw.md
268+
- name: Samples
269+
items:
270+
- name: New York Taxi
271+
href: load-data-from-azure-blob-storage-using-polybase.md
272+
- name: Contoso
273+
href: sql-data-warehouse-load-from-azure-blob-storage-with-polybase.md
274+
- name: Wide World Importers
275+
href: load-data-wideworldimportersdw.md
274276
- name: Develop
275277
items:
276278
- name: Overview
@@ -351,9 +353,9 @@
351353
items:
352354
- name: Full reference
353355
href: /sql/t-sql/language-reference?toc=/azure/sql-data-warehouse/toc.json&bc=/azure/sql-data-warehouse/breadcrumb/toc.json&view=azure-sqldw-latest
354-
- name: SQL DW language elements
356+
- name: Azure Synapse Analytics TSQL language elements
355357
href: sql-data-warehouse-reference-tsql-language-elements.md
356-
- name: SQL DW statements
358+
- name: Azure Synapse Analytics TSQL statements
357359
href: sql-data-warehouse-reference-tsql-statements.md
358360
- name: System views
359361
href: sql-data-warehouse-reference-tsql-system-views.md

articles/sql-data-warehouse/breadcrumb/toc.yml

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,30 +2,30 @@
22
tocHref: /azure/
33
topicHref: /azure/index
44
items:
5-
- name: SQL Data Warehouse
5+
- name: Synapse Analytics
66
tocHref: /azure/sql-database/
77
topicHref: /azure/sql-data-warehouse/index
88

99
- name: Azure
1010
tocHref: /azure/
1111
topicHref: /azure/index
1212
items:
13-
- name: SQL Data Warehouse
13+
- name: Synapse Analytics
1414
tocHref: /azure/azure-databricks/
1515
topicHref: /azure/sql-data-warehouse/index
1616

1717
- name: Azure
1818
tocHref: /azure/
1919
topicHref: /azure/index
2020
items:
21-
- name: SQL Data Warehouse
21+
- name: Synapse Analytics
2222
tocHref: /azure/data-factory/
2323
topicHref: /azure/sql-data-warehouse/index
2424

2525
- name: Azure
2626
tocHref: /azure/
2727
topicHref: /azure/index
2828
items:
29-
- name: SQL Data Warehouse
29+
- name: Synapse Analytics
3030
tocHref: /sql/t-sql/
31-
topicHref: /azure/sql-data-warehouse/index
31+
topicHref: /azure/sql-data-warehouse/index

articles/sql-data-warehouse/cheat-sheet.md

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,20 @@
11
---
2-
title: Cheat sheet for Azure SQL Data Warehouse | Microsoft Docs
3-
description: Find links and best practices to quickly build your Azure SQL Data Warehouse solutions.
2+
title: Cheat sheet for Azure Synapse Analytics (formerly SQL DW) | Microsoft Docs
3+
description: Find links and best practices to quickly build your Azure Synapse Analytics solutions.
44
services: sql-data-warehouse
55
author: mlee3gsd
66
manager: craigg
77
ms.service: sql-data-warehouse
88
ms.topic: overview
99
ms.subservice: design
10-
ms.date: 08/23/2019
10+
ms.date: 11/04/2019
1111
ms.author: martinle
1212
ms.reviewer: igorstan
1313
---
1414

15-
# Cheat sheet for Azure SQL Data Warehouse
16-
This cheat sheet provides helpful tips and best practices for building your Azure SQL Data Warehouse solutions. Before you get started, learn more about each step in detail by reading [Azure SQL Data Warehouse Workload Patterns and Anti-Patterns](https://blogs.msdn.microsoft.com/sqlcat/20../../azure-sql-data-warehouse-workload-patterns-and-anti-patterns), which explains what SQL Data Warehouse is and what it is not.
15+
# Cheat sheet for Azure Synapse Analytics (formerly SQL DW)
16+
17+
This cheat sheet provides helpful tips and best practices for building Azure Synapse Analytics solutions.
1718

1819
The following graphic shows the process of designing a data warehouse:
1920

@@ -30,7 +31,7 @@ Knowing the types of operations in advance helps you optimize the design of your
3031

3132
## Data migration
3233

33-
First, load your data into [Azure Data Lake Storage](https://docs.microsoft.com/azure/data-factory/connector-azure-data-lake-store) or Azure Blob storage. Next, use PolyBase to load your data into SQL Data Warehouse in a staging table. Use the following configuration:
34+
First, load your data into [Azure Data Lake Storage](https://docs.microsoft.com/azure/data-factory/connector-azure-data-lake-store) or Azure Blob Storage. Next, use PolyBase to load your data into staging tables. Use the following configuration:
3435

3536
| Design | Recommendation |
3637
|:--- |:--- |
@@ -93,28 +94,28 @@ Learn more about [partitions].
9394

9495
If you're going to incrementally load your data, first make sure that you allocate larger resource classes to loading your data. This is particularly important when loading into tables with clustered columnstore indexes. See [resource classes](https://docs.microsoft.com/azure/sql-data-warehouse/resource-classes-for-workload-management) for further details.
9596

96-
We recommend using PolyBase and ADF V2 for automating your ELT pipelines into SQL Data Warehouse.
97+
We recommend using PolyBase and ADF V2 for automating your ELT pipelines into your data warehouse.
9798

9899
For a large batch of updates in your historical data, consider using a [CTAS](https://docs.microsoft.com/azure/sql-data-warehouse/sql-data-warehouse-develop-ctas) to write the data you want to keep in a table rather than using INSERT, UPDATE, and DELETE.
99100

100101
## Maintain statistics
101-
Until auto-statistics are generally available, SQL Data Warehouse requires manual maintenance of statistics. It's important to update statistics as *significant* changes happen to your data. This helps optimize your query plans. If you find that it takes too long to maintain all of your statistics, be more selective about which columns have statistics.
102+
Until auto-statistics are generally available, manual maintenance of statistics is required. It's important to update statistics as *significant* changes happen to your data. This helps optimize your query plans. If you find that it takes too long to maintain all of your statistics, be more selective about which columns have statistics.
102103

103104
You can also define the frequency of the updates. For example, you might want to update date columns, where new values might be added, on a daily basis. You gain the most benefit by having statistics on columns involved in joins, columns used in the WHERE clause, and columns found in GROUP BY.
104105

105106
Learn more about [statistics].
106107

107108
## Resource class
108-
SQL Data Warehouse uses resource groups as a way to allocate memory to queries. If you need more memory to improve query or loading speed, you should allocate higher resource classes. On the flip side, using larger resource classes impacts concurrency. You want to take that into consideration before moving all of your users to a large resource class.
109+
Resource groups are used as a way to allocate memory to queries. If you need more memory to improve query or loading speed, you should allocate higher resource classes. On the flip side, using larger resource classes impacts concurrency. You want to take that into consideration before moving all of your users to a large resource class.
109110

110111
If you notice that queries take too long, check that your users do not run in large resource classes. Large resource classes consume many concurrency slots. They can cause other queries to queue up.
111112

112-
Finally, by using Gen2 of SQL Data Warehouse, each resource class gets 2.5 times more memory than Gen1.
113+
Finally, by using Gen2 of [SQL pool](sql-data-warehouse-overview-what-is.md#sql-analytics-and-sql-pools), each resource class gets 2.5 times more memory than Gen1.
113114

114115
Learn more how to work with [resource classes and concurrency].
115116

116117
## Lower your cost
117-
A key feature of SQL Data Warehouse is the ability to [manage compute resources](sql-data-warehouse-manage-compute-overview.md). You can pause the data warehouse when you're not using it, which stops the billing of compute resources. You can scale resources to meet your performance demands. To pause, use the [Azure portal](pause-and-resume-compute-portal.md) or [PowerShell](pause-and-resume-compute-powershell.md). To scale, use the [Azure portal](quickstart-scale-compute-portal.md), [Powershell](quickstart-scale-compute-powershell.md), [T-SQL](quickstart-scale-compute-tsql.md), or a [REST API](sql-data-warehouse-manage-compute-rest-api.md#scale-compute).
118+
A key feature of Azure Synapse Analytics is the ability to [manage compute resources](sql-data-warehouse-manage-compute-overview.md). You can pause SQL pool when you're not using it, which stops the billing of compute resources. You can scale resources to meet your performance demands. To pause, use the [Azure portal](pause-and-resume-compute-portal.md) or [PowerShell](pause-and-resume-compute-powershell.md). To scale, use the [Azure portal](quickstart-scale-compute-portal.md), [Powershell](quickstart-scale-compute-powershell.md), [T-SQL](quickstart-scale-compute-tsql.md), or a [REST API](sql-data-warehouse-manage-compute-rest-api.md#scale-compute).
118119

119120
Autoscale now at the time you want with Azure Functions:
120121

@@ -126,9 +127,9 @@ Autoscale now at the time you want with Azure Functions:
126127

127128
We recommend considering SQL Database and Azure Analysis Services in a hub-and-spoke architecture. This solution can provide workload isolation between different user groups while also using advanced security features from SQL Database and Azure Analysis Services. This is also a way to provide limitless concurrency to your users.
128129

129-
Learn more about [typical architectures that take advantage of SQL Data Warehouse](https://blogs.msdn.microsoft.com/sqlcat/20../../common-isv-application-patterns-using-azure-sql-data-warehouse/).
130+
Learn more about [typical architectures that take advantage of Azure Synapse Analytics](https://blogs.msdn.microsoft.com/sqlcat/20../../common-isv-application-patterns-using-azure-sql-data-warehouse/).
130131

131-
Deploy in one click your spokes in SQL databases from SQL Data Warehouse:
132+
Deploy in one click your spokes in SQL databases from SQL pool:
132133

133134
<a href="https://ms.portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2FMicrosoft%2Fsql-data-warehouse-samples%2Fmaster%2Farm-templates%2FsqlDwSpokeDbTemplate%2Fazuredeploy.json" target="_blank">
134135
<img src="https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/1-CONTRIBUTION-GUIDE/images/deploytoazure.png"/>

articles/sql-data-warehouse/design-elt-data-loading.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ To load data with PolyBase, you can use any of these loading options:
118118
- [PolyBase with T-SQL](load-data-from-azure-blob-storage-using-polybase.md) works well when your data is in Azure Blob storage or Azure Data Lake Store. It gives you the most control over the loading process, but also requires you to define external data objects. The other methods define these objects behind the scenes as you map source tables to destination tables. To orchestrate T-SQL loads, you can use Azure Data Factory, SSIS, or Azure functions.
119119
- [PolyBase with SSIS](/sql/integration-services/load-data-to-sql-data-warehouse) works well when your source data is in SQL Server, either SQL Server on-premises or in the cloud. SSIS defines the source to destination table mappings, and also orchestrates the load. If you already have SSIS packages, you can modify the packages to work with the new data warehouse destination.
120120
- [PolyBase with Azure Data Factory (ADF)](sql-data-warehouse-load-with-data-factory.md) is another orchestration tool. It defines a pipeline and schedules jobs.
121-
- [PolyBase with Azure DataBricks](../azure-databricks/databricks-extract-load-sql-data-warehouse.md) transfers data from a SQL Data Warehouse table to a Databricks dataframe and/or writes data from a Databricks dataframe to a SQL Data Warehouse table using PolyBase.
121+
- [PolyBase with Azure Databricks](../azure-databricks/databricks-extract-load-sql-data-warehouse.md) transfers data from a SQL Data Warehouse table to a Databricks dataframe and/or writes data from a Databricks dataframe to a SQL Data Warehouse table using PolyBase.
122122

123123
### Non-PolyBase loading options
124124

0 commit comments

Comments
 (0)