Skip to content

Commit c11bae9

Browse files
fix registry references and add preview tag
1 parent 65e1185 commit c11bae9

File tree

1 file changed

+28
-17
lines changed

1 file changed

+28
-17
lines changed

articles/machine-learning/how-to-auto-train-forecast.md

Lines changed: 28 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -757,6 +757,8 @@ Once the job is submitted, AutoML will provision compute resources, apply featur
757757

758758
## Orchestrating training, inference, and evaluation with components and pipelines
759759

760+
[!INCLUDE [preview v2](includes/machine-learning-preview-generic-disclaimer.md)]
761+
760762
Your ML workflow likely requires more than just training. Inference, or retrieving model predictions on newer data, and evaluation of model accuracy on a test set with known target values are other common tasks that you can orchestrate in AzureML along with training jobs. To support inference and evaluation tasks, AzureML provides [components](concept-component.md), which are self-contained pieces of code that do one step in an AzureML [pipeline](concept-ml-pipelines.md).
761763

762764
# [Python SDK](#tab/python)
@@ -776,11 +778,16 @@ except Exception as ex:
776778
# Fall back to InteractiveBrowserCredential in case DefaultAzureCredential fails
777779
credential = InteractiveBrowserCredential()
778780
779-
# Create a client for accessing assets in the AzureML registry
781+
# Create a client for accessing assets in the AzureML preview registry
780782
ml_client_registry = MLClient(
781783
credential=credential,
782-
registry_name="<REGISTRY_NAME>",
783-
registry_location="<REGISTRY_REGION>"
784+
registry_name="azureml-preview"
785+
)
786+
787+
# Create a client for accessing assets in the AzureML preview registry
788+
ml_client_metrics_registry = MLClient(
789+
credential=credential,
790+
registry_name="azureml"
784791
)
785792
786793
# Get an inference component from the registry
@@ -790,7 +797,7 @@ inference_component = ml_client_registry.components.get(
790797
)
791798
792799
# Get a component for computing evaluation metrics from the registry
793-
compute_metrics_component = ml_client_registry.components.get(
800+
compute_metrics_component = ml_client_metrics_registry.components.get(
794801
name="compute_metrics",
795802
label="latest"
796803
)
@@ -961,7 +968,7 @@ jobs:
961968
# Configure the inference node to make rolling forecasts on the test set
962969
inference_node:
963970
type: command
964-
component: azureml://registries/ForecastingDemand2/components/automl_forecasting_inference/versions/0.0.1.2.preview
971+
component: azureml://registries/azureml-preview/components/automl_forecasting_inference@latest
965972
inputs:
966973
target_column_name: ${{parent.inputs.target_column_name}}
967974
forecast_mode: rolling
@@ -976,7 +983,7 @@ jobs:
976983
# Configure the metrics calculation node
977984
compute_metrics:
978985
type: command
979-
component: azureml://registries/ForecastingDemand2/components/compute_metrics/versions/0.0.14.preview
986+
component: azureml://registries/azureml/compute_metrics@latest
980987
inputs:
981988
task: "tabular-forecasting"
982989
ground_truth: ${{parent.jobs.inference_node.outputs.inference_output_file}}
@@ -1023,6 +1030,8 @@ For more details on rolling evaluation, see our [forecasting model evaluation ar
10231030

10241031
## Forecasting at scale: many models
10251032

1033+
[!INCLUDE [preview v2](includes/machine-learning-preview-generic-disclaimer.md)]
1034+
10261035
The many models components in AutoML enable you to train and manage millions of models in parallel. For more information on many models concepts, see the [many models article section](concept-automl-forecasting-at-scale.md#many-models).
10271036

10281037

@@ -1100,18 +1109,18 @@ except Exception as ex:
11001109
11011110
# Get a many models training component
11021111
mm_train_component = ml_client_registry.components.get(
1103-
name='automl_many_model_training',
1112+
name='automl_many_models_training',
11041113
version='latest'
11051114
)
11061115
11071116
# Get a many models inference component
11081117
mm_inference_component = ml_client_registry.components.get(
1109-
name='automl_many_model_inferencing',
1118+
name='automl_many_models_inference',
11101119
version='latest'
11111120
)
11121121
11131122
# Get a component for computing evaluation metrics
1114-
compute_metrics_component = ml_client_registry.components.get(
1123+
compute_metrics_component = ml_client_metrics_registry.components.get(
11151124
name="compute_metrics",
11161125
label="latest"
11171126
)
@@ -1232,7 +1241,7 @@ jobs:
12321241
# Configure AutoML many models training component
12331242
mm_train_node:
12341243
type: command
1235-
component: azureml://registries/ManyModels_HTS_BugBash/components/automl_many_model_training/versions/0.1.33
1244+
component: azureml://registries/azureml-preview/components/automl_many_models_training@latest
12361245
inputs:
12371246
raw_data: ${{parent.inputs.train_data_input}}
12381247
automl_config: ${{parent.inputs.automl_config_input}}
@@ -1248,7 +1257,7 @@ jobs:
12481257
# Configure the inference node to make rolling forecasts on the test set
12491258
mm_inference_node:
12501259
type: command
1251-
component: azureml://registries/ManyModels_HTS_BugBash/components/automl_many_model_inferencing/versions/0.1.33
1260+
component: azureml://registries/azureml-preview/components/automl_many_models_inference@latest
12521261
inputs:
12531262
raw_data: ${{parent.inputs.test_data_input}}
12541263
max_concurrency_per_instance: ${{parent.inputs.max_concurrency_per_instance}}
@@ -1268,7 +1277,7 @@ jobs:
12681277
# Configure the metrics calculation node
12691278
compute_metrics:
12701279
type: command
1271-
component: azureml://registries/ForecastingDemand2/components/compute_metrics/versions/0.0.14.preview
1280+
component: azureml://registries/azureml/components/compute_metrics@latest
12721281
inputs:
12731282
task: "tabular-forecasting"
12741283
ground_truth: ${{parent.jobs.mm_inference_node.outputs.evaluation_data}}
@@ -1293,6 +1302,8 @@ After the job finishes, the evaluation metrics can be downloaded locally using t
12931302

12941303
## Forecasting at scale: hierarchical time series
12951304

1305+
[!INCLUDE [preview v2](includes/machine-learning-preview-generic-disclaimer.md)]
1306+
12961307
The hierarchical time series (HTS) components in AutoML enable you to train a large number of models on data with hierarchical structure. For more information, see the [HTS article section](concept-automl-forecasting-at-scale.md#hierarchical-time-series-forecasting).
12971308

12981309
### HTS training configuration
@@ -1376,12 +1387,12 @@ hts_train_component = ml_client_registry.components.get(
13761387
13771388
# Get a HTS inference component
13781389
hts_inference_component = ml_client_registry.components.get(
1379-
name='automl_hts_inferencing',
1390+
name='automl_hts_inference',
13801391
version='latest'
13811392
)
13821393
13831394
# Get a component for computing evaluation metrics
1384-
compute_metrics_component = ml_client_registry.components.get(
1395+
compute_metrics_component = ml_client_metrics_registry.components.get(
13851396
name="compute_metrics",
13861397
label="latest"
13871398
)
@@ -1499,7 +1510,7 @@ jobs:
14991510
# Configure AutoML many models training component
15001511
hts_train_node:
15011512
type: command
1502-
component: azureml://registries/ManyModels_HTS_BugBash/components/automl_hts_training/versions/0.1.33
1513+
component: azureml://registries/azureml-preview/components/automl_hts_training@latest
15031514
inputs:
15041515
raw_data: ${{parent.inputs.train_data_input}}
15051516
automl_config: ${{parent.inputs.automl_config_input}}
@@ -1514,7 +1525,7 @@ jobs:
15141525
# Configure the inference node to make rolling forecasts on the test set
15151526
hts_inference_node:
15161527
type: command
1517-
component: azureml://registries/ManyModels_HTS_BugBash/components/automl_hts_inferencing/versions/0.1.33
1528+
component: azureml://registries/azureml-preview/components/automl_hts_inference@latest
15181529
inputs:
15191530
raw_data: ${{parent.inputs.test_data_input}}
15201531
max_concurrency_per_instance: ${{parent.inputs.max_concurrency_per_instance}}
@@ -1536,7 +1547,7 @@ jobs:
15361547
# Configure the metrics calculation node
15371548
compute_metrics:
15381549
type: command
1539-
component: azureml://registries/ForecastingDemand2/components/compute_metrics/versions/0.0.14.preview
1550+
component: azureml://registries/azureml/components/compute_metrics@latest
15401551
inputs:
15411552
task: "tabular-forecasting"
15421553
ground_truth: ${{parent.jobs.hts_inference_node.outputs.evaluation_data}}

0 commit comments

Comments
 (0)