@@ -757,6 +757,8 @@ Once the job is submitted, AutoML will provision compute resources, apply featur
757
757
758
758
# # Orchestrating training, inference, and evaluation with components and pipelines
759
759
760
+ [!INCLUDE [preview v2](includes/machine-learning-preview-generic-disclaimer.md)]
761
+
760
762
Your ML workflow likely requires more than just training. Inference, or retrieving model predictions on newer data, and evaluation of model accuracy on a test set with known target values are other common tasks that you can orchestrate in AzureML along with training jobs. To support inference and evaluation tasks, AzureML provides [components](concept-component.md), which are self-contained pieces of code that do one step in an AzureML [pipeline](concept-ml-pipelines.md).
761
763
762
764
# [Python SDK](#tab/python)
@@ -776,11 +778,16 @@ except Exception as ex:
776
778
# Fall back to InteractiveBrowserCredential in case DefaultAzureCredential fails
777
779
credential = InteractiveBrowserCredential()
778
780
779
- # Create a client for accessing assets in the AzureML registry
781
+ # Create a client for accessing assets in the AzureML preview registry
780
782
ml_client_registry = MLClient(
781
783
credential=credential,
782
- registry_name="<REGISTRY_NAME>",
783
- registry_location="<REGISTRY_REGION>"
784
+ registry_name="azureml-preview"
785
+ )
786
+
787
+ # Create a client for accessing assets in the AzureML preview registry
788
+ ml_client_metrics_registry = MLClient(
789
+ credential=credential,
790
+ registry_name="azureml"
784
791
)
785
792
786
793
# Get an inference component from the registry
@@ -790,7 +797,7 @@ inference_component = ml_client_registry.components.get(
790
797
)
791
798
792
799
# Get a component for computing evaluation metrics from the registry
793
- compute_metrics_component = ml_client_registry .components.get(
800
+ compute_metrics_component = ml_client_metrics_registry .components.get(
794
801
name="compute_metrics",
795
802
label="latest"
796
803
)
@@ -961,7 +968,7 @@ jobs:
961
968
# Configure the inference node to make rolling forecasts on the test set
962
969
inference_node:
963
970
type: command
964
- component: azureml://registries/ForecastingDemand2 /components/automl_forecasting_inference/versions/0.0.1.2.preview
971
+ component: azureml://registries/azureml-preview /components/automl_forecasting_inference@latest
965
972
inputs:
966
973
target_column_name: ${{parent.inputs.target_column_name}}
967
974
forecast_mode: rolling
@@ -976,7 +983,7 @@ jobs:
976
983
# Configure the metrics calculation node
977
984
compute_metrics:
978
985
type: command
979
- component: azureml://registries/ForecastingDemand2/components/ compute_metrics/versions/0.0.14.preview
986
+ component: azureml://registries/azureml/ compute_metrics@latest
980
987
inputs:
981
988
task: "tabular-forecasting"
982
989
ground_truth: ${{parent.jobs.inference_node.outputs.inference_output_file}}
@@ -1023,6 +1030,8 @@ For more details on rolling evaluation, see our [forecasting model evaluation ar
1023
1030
1024
1031
# # Forecasting at scale: many models
1025
1032
1033
+ [!INCLUDE [preview v2](includes/machine-learning-preview-generic-disclaimer.md)]
1034
+
1026
1035
The many models components in AutoML enable you to train and manage millions of models in parallel. For more information on many models concepts, see the [many models article section](concept-automl-forecasting-at-scale.md#many-models).
1027
1036
1028
1037
@@ -1100,18 +1109,18 @@ except Exception as ex:
1100
1109
1101
1110
# Get a many models training component
1102
1111
mm_train_component = ml_client_registry.components.get(
1103
- name='automl_many_model_training ',
1112
+ name='automl_many_models_training ',
1104
1113
version='latest'
1105
1114
)
1106
1115
1107
1116
# Get a many models inference component
1108
1117
mm_inference_component = ml_client_registry.components.get(
1109
- name='automl_many_model_inferencing ',
1118
+ name='automl_many_models_inference ',
1110
1119
version='latest'
1111
1120
)
1112
1121
1113
1122
# Get a component for computing evaluation metrics
1114
- compute_metrics_component = ml_client_registry .components.get(
1123
+ compute_metrics_component = ml_client_metrics_registry .components.get(
1115
1124
name="compute_metrics",
1116
1125
label="latest"
1117
1126
)
@@ -1232,7 +1241,7 @@ jobs:
1232
1241
# Configure AutoML many models training component
1233
1242
mm_train_node:
1234
1243
type: command
1235
- component: azureml://registries/ManyModels_HTS_BugBash /components/automl_many_model_training/versions/0.1.33
1244
+ component: azureml://registries/azureml-preview /components/automl_many_models_training@latest
1236
1245
inputs:
1237
1246
raw_data: ${{parent.inputs.train_data_input}}
1238
1247
automl_config: ${{parent.inputs.automl_config_input}}
@@ -1248,7 +1257,7 @@ jobs:
1248
1257
# Configure the inference node to make rolling forecasts on the test set
1249
1258
mm_inference_node:
1250
1259
type: command
1251
- component: azureml://registries/ManyModels_HTS_BugBash /components/automl_many_model_inferencing/versions/0.1.33
1260
+ component: azureml://registries/azureml-preview /components/automl_many_models_inference@latest
1252
1261
inputs:
1253
1262
raw_data: ${{parent.inputs.test_data_input}}
1254
1263
max_concurrency_per_instance: ${{parent.inputs.max_concurrency_per_instance}}
@@ -1268,7 +1277,7 @@ jobs:
1268
1277
# Configure the metrics calculation node
1269
1278
compute_metrics:
1270
1279
type: command
1271
- component: azureml://registries/ForecastingDemand2 /components/compute_metrics/versions/0.0.14.preview
1280
+ component: azureml://registries/azureml /components/compute_metrics@latest
1272
1281
inputs:
1273
1282
task: "tabular-forecasting"
1274
1283
ground_truth: ${{parent.jobs.mm_inference_node.outputs.evaluation_data}}
@@ -1293,6 +1302,8 @@ After the job finishes, the evaluation metrics can be downloaded locally using t
1293
1302
1294
1303
# # Forecasting at scale: hierarchical time series
1295
1304
1305
+ [!INCLUDE [preview v2](includes/machine-learning-preview-generic-disclaimer.md)]
1306
+
1296
1307
The hierarchical time series (HTS) components in AutoML enable you to train a large number of models on data with hierarchical structure. For more information, see the [HTS article section](concept-automl-forecasting-at-scale.md#hierarchical-time-series-forecasting).
1297
1308
1298
1309
# ## HTS training configuration
@@ -1376,12 +1387,12 @@ hts_train_component = ml_client_registry.components.get(
1376
1387
1377
1388
# Get a HTS inference component
1378
1389
hts_inference_component = ml_client_registry.components.get(
1379
- name='automl_hts_inferencing ',
1390
+ name='automl_hts_inference ',
1380
1391
version='latest'
1381
1392
)
1382
1393
1383
1394
# Get a component for computing evaluation metrics
1384
- compute_metrics_component = ml_client_registry .components.get(
1395
+ compute_metrics_component = ml_client_metrics_registry .components.get(
1385
1396
name="compute_metrics",
1386
1397
label="latest"
1387
1398
)
@@ -1499,7 +1510,7 @@ jobs:
1499
1510
# Configure AutoML many models training component
1500
1511
hts_train_node:
1501
1512
type: command
1502
- component: azureml://registries/ManyModels_HTS_BugBash /components/automl_hts_training/versions/0.1.33
1513
+ component: azureml://registries/azureml-preview /components/automl_hts_training@latest
1503
1514
inputs:
1504
1515
raw_data: ${{parent.inputs.train_data_input}}
1505
1516
automl_config: ${{parent.inputs.automl_config_input}}
@@ -1514,7 +1525,7 @@ jobs:
1514
1525
# Configure the inference node to make rolling forecasts on the test set
1515
1526
hts_inference_node:
1516
1527
type: command
1517
- component: azureml://registries/ManyModels_HTS_BugBash /components/automl_hts_inferencing/versions/0.1.33
1528
+ component: azureml://registries/azureml-preview /components/automl_hts_inference@latest
1518
1529
inputs:
1519
1530
raw_data: ${{parent.inputs.test_data_input}}
1520
1531
max_concurrency_per_instance: ${{parent.inputs.max_concurrency_per_instance}}
@@ -1536,7 +1547,7 @@ jobs:
1536
1547
# Configure the metrics calculation node
1537
1548
compute_metrics:
1538
1549
type: command
1539
- component: azureml://registries/ForecastingDemand2 /components/compute_metrics/versions/0.0.14.preview
1550
+ component: azureml://registries/azureml /components/compute_metrics@latest
1540
1551
inputs:
1541
1552
task: "tabular-forecasting"
1542
1553
ground_truth: ${{parent.jobs.hts_inference_node.outputs.evaluation_data}}
0 commit comments