Skip to content

Commit c6c5bca

Browse files
Updating the demo tutorial
1 parent 8940fd7 commit c6c5bca

File tree

1 file changed

+8
-33
lines changed

1 file changed

+8
-33
lines changed

articles/machine-learning/how-to-setup-mlops-azureml.md

Lines changed: 8 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ ms.custom: cli-v2, sdk-v2
1717

1818
[!INCLUDE [dev v2](../../includes/machine-learning-dev-v2.md)]
1919

20-
Azure Machine Learning allows you to integration with [Azure DevOps pipeline](/azure/devops/pipelines/) to automate the machine learning lifecycle. Some of the operations you can automate are:
20+
Azure Machine Learning allows you to integrate with [Azure DevOps pipeline](/azure/devops/pipelines/) to automate the machine learning lifecycle. Some of the operations you can automate are:
2121

2222
* Deployment of AzureML infrastructure
2323
* Data preparation (extract, transform, load operations)
@@ -94,7 +94,7 @@ Before you can set up an MLOps project with AzureML, you need to set up authenti
9494
}
9595
```
9696
97-
1. Repeat **Step 3.** if you're creating service principals for Dev and Prod environments.
97+
1. Repeat **Step 3.** if you're creating service principals for Dev and Prod environments. For this demo, we will be creating only one environment which is Prod.
9898

9999
1. Close the Cloud Shell once the service principals are created.
100100

@@ -146,9 +146,9 @@ Before you can set up an MLOps project with AzureML, you need to set up authenti
146146
- **Tenant ID** - Use the `tenant` from **Step 1.** output as the Tenant ID
147147

148148

149-
6. Name the service connection **Azure-ARM-Dev**.
149+
6. Name the service connection **Azure-ARM-Prod**.
150150

151-
7. Select **Grant access permission to all pipelines**, then select **Verify and Save**. Repeat this step to create another service connection **Azure-ARM-Prod** using the details of the Prod service principal created in **Step 1.**
151+
7. Select **Grant access permission to all pipelines**, then select **Verify and Save**.
152152

153153
The Azure DevOps setup is successfully finished.
154154

@@ -164,18 +164,6 @@ The Azure DevOps setup is successfully finished.
164164

165165
![Screenshot of ADO import MLOps demo repo.](./media/how-to-setup-mlops-azureml/import_repo_Git_template.png)
166166

167-
168-
1. Open the Repos section. Click on the default repo name at the top of the screen and select Import Repository
169-
170-
![Screenshot of ADO import repo.](./media/how-to-setup-mlops-azureml/ado-import-repo.png)
171-
172-
1. Enter https://github.com/Azure/mlops-templates into the Clone URL field. Click import at the bottom of the page
173-
174-
![Screenshot of ADO import MLOps template repo.](./media/how-to-setup-mlops-azureml/ado-import-mlops-templates.png)
175-
176-
> [!TIP]
177-
> Learn more about the MLOps v2 accelerator structure and the MLOps [template](https://github.com/Azure/mlops-v2/)
178-
179167
1. Open the **Project settings** at the bottom of the left hand navigation pane
180168

181169
1. Under the Repos section, click **Repositories**. Select the repository you created in **Step 6.** Select the **Security** tab
@@ -202,7 +190,7 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
202190
> Make sure you understand the [Architectural Patterns](/azure/architecture/data-guide/technology-choices/machine-learning-operations-v2) of the solution accelerator before you checkout the MLOps v2 repo and deploy the infrastructure. In examples you'll use the [classical ML project type](/azure/architecture/data-guide/technology-choices/machine-learning-operations-v2#classical-machine-learning-architecture).
203191
204192
### Run Azure infrastructure pipeline
205-
1. Go to the first repo you imported in the previous section, `mlops-v2-ado-demo`. Make sure you have the `main` branch selected and then select the **config-infra-dev.yml** file.
193+
1. Go to the first repo you imported in the previous section, `mlops-v2-ado-demo`, and please select the **config-infra-prod.yml** file.
206194
207195
![Screenshot of Repo in ADO.](./media/how-to-setup-mlops-azureml/ADO-repo.png)
208196
@@ -218,8 +206,6 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
218206
219207
1. Click Commit and push code to get these values into the pipeline.
220208
221-
1. Repeat this step for **config-infra-prod.yml** file.
222-
223209
1. Go to Pipelines section
224210
225211
![Screenshot of ADO Pipelines.](./media/how-to-setup-mlops-azureml/ADO-pipelines.png)
@@ -239,12 +225,7 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
239225
![Screenshot of ADO Pipeline page on configure step.](./media/how-to-setup-mlops-azureml/ADO-configure-pipelines.png)
240226

241227

242-
1. Select `main` as a branch and choose based on your deployment method your preferred yml path.
243-
- For a terraform scenario, choose `infrastructure/pipelines/tf-ado-deploy-infra.yml`, then select **Continue**.
244-
- For a bicep scenario, choose `infrastructure/pipelines/bicep-ado-deploy-infra.yml`, then select **Continue**.
245-
246-
> [!CAUTION]
247-
> For this example, make sure the [Terraform extension for Azure DevOps](https://marketplace.visualstudio.com/items?itemName=ms-devlabs.custom-terraform-tasks) is installed.
228+
1. Select your working branch (or the `main` branch) and choose `mlops/devops-pipelines/cli-ado-deploy-infra.yml`, then select **Continue**.
248229

249230
1. Run the pipeline; it will take a few minutes to finish. The pipeline should create the following artifacts:
250231
* Resource Group for your Workspace including Storage Account, Container Registry, Application Insights, Keyvault and the Azure Machine Learning Workspace itself.
@@ -325,15 +306,9 @@ This step deploys the training pipeline to the Azure Machine Learning workspace
325306

326307
![Screenshot of ADO Pipeline page on configure step.](./media/how-to-setup-mlops-azureml/ADO-configure-pipelines.png)
327308

328-
1. Select `main` as a branch and choose:
329-
330-
- For Managed Batch Endpoint `/mlops/devops-pipelines/deploy-batch-endpoint-pipeline.yml`
331-
332-
- For Managed Online Endpoint `/mlops/devops-pipelines/deploy-online-endpoint-pipeline.yml`
333-
334-
Then select **Continue**.
309+
1. Select `main` as a branch and choose Managed Online Endpoint `/mlops/devops-pipelines/deploy-online-endpoint-pipeline.yml` then select **Continue**.
335310

336-
1. Batch/Online endpoint names need to be unique, so change **[your endpoint-name]** to another unique name and then select **Run**.
311+
1. Online endpoint names need to be unique, so change **[your endpoint-name]** to another unique name and then select **Run**. No need to change the default if it does not fail.
337312

338313
![Screenshot of ADO batch deploy script.](./media/how-to-setup-mlops-azureml/ADO-batch-pipeline.png)
339314

0 commit comments

Comments
 (0)