Skip to content

Commit c6da0cf

Browse files
committed
updating tab locations
1 parent 7820fac commit c6da0cf

File tree

2 files changed

+114
-111
lines changed

2 files changed

+114
-111
lines changed

articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-entity-linking.md

Lines changed: 76 additions & 74 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ manager: nitinme
99
ms.service: cognitive-services
1010
ms.subservice: text-analytics
1111
ms.topic: article
12-
ms.date: 01/27/2019
12+
ms.date: 02/10/2020
1313
ms.author: aahi
1414
---
1515

@@ -40,6 +40,34 @@ The Text Analytics API offers two versions of Named Entity Recognition - v2 and
4040

4141
See [language support](../language-support.md#sentiment-analysis-key-phrase-extraction-and-named-entity-recognition) for information.
4242

43+
44+
#### [Version 3.0-preview](#tab/version-3)
45+
46+
### Entity types
47+
48+
Named Entity Recognition v3 provides expanded detection across multiple types. Currently, NER v3 can recognize the following categories of entities:
49+
50+
* General
51+
* Personal Information
52+
53+
For a detailed list of supported entities and languages, see the [NER v3 supported entity types](../named-entity-types.md) article.
54+
55+
### Request endpoints
56+
57+
Named Entity Recognition v3 uses separate endpoints for NER and entity linking requests. Use a URL format below based on your request:
58+
59+
NER
60+
* General entities - `https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/entities/recognition/general`
61+
62+
* Personal information - `https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/entities/recognition/pii`
63+
64+
Entity linking
65+
* `https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/entities/linking`
66+
67+
### Model versioning
68+
69+
[!INCLUDE [v3-model-versioning](../includes/model-versioning.md)]
70+
4371
#### [Version 2](#tab/version-2)
4472

4573
### Entity types
@@ -79,33 +107,6 @@ Named Entity Recognition v2 uses a single endpoint for NER and entity linking re
79107

80108
`https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v2.1/entities`
81109

82-
#### [Version 3 (Public preview)](#tab/version-3)
83-
84-
### Entity types
85-
86-
Named Entity Recognition v3 provides expanded detection across multiple types. Currently, NER v3 can recognize the following categories of entities:
87-
88-
* General
89-
* Personal Information
90-
91-
For a detailed list of supported entities and languages, see the [NER v3 supported entity types](../named-entity-types.md) article.
92-
93-
### Request endpoints
94-
95-
Named Entity Recognition v3 uses separate endpoints for NER and entity linking requests. Use a URL format below based on your request:
96-
97-
NER
98-
* General entities - `https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/entities/recognition/general`
99-
100-
* Personal information - `https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/entities/recognition/pii`
101-
102-
Entity linking
103-
* `https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/entities/linking`
104-
105-
### Model versioning
106-
107-
[!INCLUDE [v3-model-versioning](../includes/model-versioning.md)]
108-
109110
---
110111

111112
## Sending a REST API request
@@ -122,15 +123,7 @@ Create a POST request. You can [use Postman](text-analytics-how-to-call-api.md)
122123

123124
[!INCLUDE [text-analytics-find-resource-information](../includes/find-azure-resource-info.md)]
124125

125-
#### [Version 2](#tab/version-2)
126-
127-
[Named Entity Recognition (NER) v2 reference](https://eastus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1/operations/5ac4251d5b4ccd1554da7634)
128-
129-
Version 2 uses the following endpoint for entity linking and NER requests:
130-
131-
`https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v2.1/entities`
132-
133-
#### [Version 3](#tab/version-3)
126+
#### [Version 3.0-preview](#tab/version-3)
134127

135128
[Named Entity Recognition v3 reference](https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0-Preview-1/operations/EntitiesRecognitionGeneral)
136129

@@ -144,6 +137,14 @@ NER
144137
Entity linking
145138
* `https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/entities/linking`
146139

140+
#### [Version 2](#tab/version-2)
141+
142+
[Named Entity Recognition (NER) v2 reference](https://eastus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1/operations/5ac4251d5b4ccd1554da7634)
143+
144+
Version 2 uses the following endpoint for entity linking and NER requests:
145+
146+
`https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v2.1/entities`
147+
147148
---
148149

149150
Set a request header to include your Text Analytics API key. In the request body, provide the JSON documents you prepared.
@@ -176,44 +177,8 @@ All POST requests return a JSON formatted response with the IDs and detected ent
176177

177178
Output is returned immediately. You can stream the results to an application that accepts JSON or save the output to a file on the local system, and then import it into an application that allows you to sort, search, and manipulate the data.
178179

179-
#### [Version 2](#tab/version-2)
180-
181-
### Example NER v2 response
182-
```json
183-
{
184-
"documents": [{
185-
"id": "1",
186-
"entities": [{
187-
"name": "Seattle",
188-
"matches": [{
189-
"wikipediaScore": 0.15046201222847677,
190-
"entityTypeScore": 0.80624294281005859,
191-
"text": "Seattle",
192-
"offset": 26,
193-
"length": 7
194-
}],
195-
"wikipediaLanguage": "en",
196-
"wikipediaId": "Seattle",
197-
"wikipediaUrl": "https://en.wikipedia.org/wiki/Seattle",
198-
"bingId": "5fbba6b8-85e1-4d41-9444-d9055436e473",
199-
"type": "Location"
200-
}, {
201-
"name": "last week",
202-
"matches": [{
203-
"entityTypeScore": 0.8,
204-
"text": "last week",
205-
"offset": 34,
206-
"length": 9
207-
}],
208-
"type": "DateTime",
209-
"subType": "DateRange"
210-
}]
211-
}],
212-
"errors": []
213-
}
214-
```
215180

216-
#### [Version 3 (Public preview)](#tab/version-3)
181+
#### [Version 3.0-preview)](#tab/version-3)
217182

218183
### Example v3 responses
219184

@@ -270,6 +235,43 @@ Version 3 provides separate endpoints for NER and entity linking. The responses
270235
}
271236
```
272237

238+
#### [Version 2](#tab/version-2)
239+
240+
### Example NER v2 response
241+
```json
242+
{
243+
"documents": [{
244+
"id": "1",
245+
"entities": [{
246+
"name": "Seattle",
247+
"matches": [{
248+
"wikipediaScore": 0.15046201222847677,
249+
"entityTypeScore": 0.80624294281005859,
250+
"text": "Seattle",
251+
"offset": 26,
252+
"length": 7
253+
}],
254+
"wikipediaLanguage": "en",
255+
"wikipediaId": "Seattle",
256+
"wikipediaUrl": "https://en.wikipedia.org/wiki/Seattle",
257+
"bingId": "5fbba6b8-85e1-4d41-9444-d9055436e473",
258+
"type": "Location"
259+
}, {
260+
"name": "last week",
261+
"matches": [{
262+
"entityTypeScore": 0.8,
263+
"text": "last week",
264+
"offset": 34,
265+
"length": 9
266+
}],
267+
"type": "DateTime",
268+
"subType": "DateRange"
269+
}]
270+
}],
271+
"errors": []
272+
}
273+
```
274+
273275
---
274276

275277
## Summary

articles/cognitive-services/text-analytics/how-tos/text-analytics-how-to-sentiment-analysis.md

Lines changed: 38 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ manager: nitinme
88
ms.service: cognitive-services
99
ms.subservice: text-analytics
1010
ms.topic: sample
11-
ms.date: 12/17/2019
11+
ms.date: 02/10/2020
1212
ms.author: aahi
1313
---
1414

@@ -45,14 +45,7 @@ The Text Analytics API offers two versions of Sentiment Analysis - v2 and v3. Se
4545
| Sentiment labeling | | X |
4646
| Model versioning | | X |
4747

48-
#### [Version 2](#tab/version-2)
49-
50-
### Sentiment scoring
51-
52-
The sentiment analyzer classifies text as predominantly positive or negative. It assigns a score in the range of 0 to 1. Values close to 0.5 are neutral or indeterminate. A score of 0.5 indicates neutrality. When a string can't be analyzed for sentiment or has no sentiment, the score is always 0.5 exactly. For example, if you pass in a Spanish string with an English language code, the score is 0.5.
53-
54-
55-
#### [Version 3 (Public preview)](#tab/version-3)
48+
#### [Version 3.0-preview](#tab/version-3)
5649

5750
### Sentiment scoring
5851

@@ -80,6 +73,13 @@ Sentiment Analysis v3 can return scores and labels at a sentence and document le
8073

8174
You can find an example C# application that calls this version of Sentiment Analysis on [GitHub](https://github.com/Azure-Samples/cognitive-services-REST-api-samples/tree/master/dotnet/Language/SentimentV3.cs).
8275

76+
77+
#### [Version 2](#tab/version-2)
78+
79+
### Sentiment scoring
80+
81+
The sentiment analyzer classifies text as predominantly positive or negative. It assigns a score in the range of 0 to 1. Values close to 0.5 are neutral or indeterminate. A score of 0.5 indicates neutrality. When a string can't be analyzed for sentiment or has no sentiment, the score is always 0.5 exactly. For example, if you pass in a Spanish string with an English language code, the score is 0.5.
82+
8383
---
8484

8585
## Sending a REST API request
@@ -96,27 +96,27 @@ Document size must be under 5,120 characters per document. You can have up to 1,
9696

9797
Create a POST request. You can [use Postman](text-analytics-how-to-call-api.md) or the **API testing console** in the following reference links to quickly structure and send one.
9898

99-
#### [Version 2](#tab/version-2)
99+
#### [Version 3.0-preview](#tab/version-3)
100100

101-
[Sentiment Analysis v2 reference](https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1/operations/56f30ceeeda5650db055a3c9)
101+
[Sentiment Analysis v3 reference](https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0-Preview-1/operations/Sentiment)
102102

103-
#### [Version 3 (Public preview)](#tab/version-3)
103+
#### [Version 2](#tab/version-2)
104104

105-
[Sentiment Analysis v3 reference](https://westus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v3-0-Preview-1/operations/Sentiment)
105+
[Sentiment Analysis v2 reference](https://westcentralus.dev.cognitive.microsoft.com/docs/services/TextAnalytics-v2-1/operations/56f30ceeeda5650db055a3c9)
106106

107107
---
108108

109109
Set the HTTPS endpoint for sentiment analysis by using either a Text Analytics resource on Azure or an instantiated [Text Analytics container](text-analytics-how-to-install-containers.md). You must include the correct URL for the version you want to use. For example:
110110

111111
[!INCLUDE [text-analytics-find-resource-information](../includes/find-azure-resource-info.md)]
112112

113-
#### [Version 2](#tab/version-2)
113+
#### [Version 3.0-preview](#tab/version-3)
114114

115-
`https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v2.1/sentiment`
115+
`https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/sentiment`
116116

117-
#### [Version 3 (Public preview)](#tab/version-3)
117+
#### [Version 2](#tab/version-2)
118118

119-
`https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v3.0-preview.1/sentiment`
119+
`https://<your-custom-subdomain>.cognitiveservices.azure.com/text/analytics/v2.1/sentiment`
120120

121121
---
122122

@@ -156,26 +156,7 @@ The sentiment analyzer classifies text as predominantly positive or negative. It
156156

157157
Output is returned immediately. You can stream the results to an application that accepts JSON or save the output to a file on the local system. Then, import the output into an application that you can use to sort, search, and manipulate the data.
158158

159-
#### [Version 2](#tab/version-2)
160-
161-
### Sentiment Analysis v2 example response
162-
163-
Responses from Sentiment Analysis v2 contain sentiment scores for each sent document.
164-
165-
```json
166-
{
167-
"documents": [{
168-
"id": "1",
169-
"score": 0.98690706491470337
170-
}, {
171-
"id": "2",
172-
"score": 0.95202046632766724
173-
}],
174-
"errors": []
175-
}
176-
```
177-
178-
#### [Version 3 (Public preview)](#tab/version-3)
159+
#### [Version 3.0-preview](#tab/version-3)
179160

180161
### Sentiment Analysis v3 example response
181162

@@ -250,6 +231,26 @@ Responses from Sentiment Analysis v3 contain sentiment labels and scores for eac
250231
"errors": []
251232
}
252233
```
234+
235+
#### [Version 2](#tab/version-2)
236+
237+
### Sentiment Analysis v2 example response
238+
239+
Responses from Sentiment Analysis v2 contain sentiment scores for each sent document.
240+
241+
```json
242+
{
243+
"documents": [{
244+
"id": "1",
245+
"score": 0.98690706491470337
246+
}, {
247+
"id": "2",
248+
"score": 0.95202046632766724
249+
}],
250+
"errors": []
251+
}
252+
```
253+
253254
---
254255

255256
## Summary

0 commit comments

Comments
 (0)