Skip to content

Commit c6e5831

Browse files
authored
vnet clarity
1 parent 6c43c63 commit c6e5831

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

articles/machine-learning/how-to-create-register-datasets.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -94,7 +94,7 @@ datastore_paths = [(datastore, 'ather/2018/11.csv'),
9494
weather_ds = Dataset.Tabular.from_delimited_files(path=datastore_paths)
9595
```
9696

97-
By default, when you create a TabularDataset, column data types are inferred automatically. If the inferred types don't match your expectations, you can specify column types by using the following code. If your storage is behind a virtual network or firewall, include the parameters `validate=False` and `infer_column_types=False` in your `from_delimited_files()` method. You can also [learn more about supported data types](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.datatype?view=azure-ml-py).
97+
By default, when you create a TabularDataset, column data types are inferred automatically. If the inferred types don't match your expectations, you can specify column types by using the following code. If your storage is behind a virtual network or firewall, include the parameters `validate=False` and `infer_column_types=False` in your `from_delimited_files()` method. This bypasses the initial validation check and ensures that you can create your dataset from these secure files. You can also [learn more about supported data types](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.datatype?view=azure-ml-py).
9898

9999
> [!NOTE]
100100
>The parameter `infer_column_type` is only applicable for datasets created from delimited files.
@@ -150,7 +150,7 @@ data_slice = dataset.time_recent(timedelta(weeks=1, days=1))
150150

151151
#### Create a FileDataset
152152

153-
Use the [`from_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-) method on the `FileDatasetFactory` class to load files in any format and to create an unregistered FileDataset. If your storage is behind a a virtual network or firewall, set the parameter `validate =False` in your `from_files()` method.
153+
Use the [`from_files()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.filedatasetfactory?view=azure-ml-py#from-files-path--validate-true-) method on the `FileDatasetFactory` class to load files in any format and to create an unregistered FileDataset. If your storage is behind a a virtual network or firewall, set the parameter `validate =False` in your `from_files()` method. This bypasses the initial validation step, and ensures that you can create your dataset from these secure files.
154154

155155
```Python
156156
# create a FileDataset pointing to files in 'animals' folder and its subfolders recursively

0 commit comments

Comments
 (0)