Skip to content

Commit c98e014

Browse files
committed
Fix detected errors.
1 parent a7e76c5 commit c98e014

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

articles/machine-learning/how-to-mltable.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,7 @@ Azure Machine Learning Tables are useful in the following scenarios:
9595
9696
## Azure Machine Learning Tables Quickstart
9797

98-
In this quickstart, you create a Table (`mltable`) of the [NYC Green Taxi Data](../open-datasets/dataset-taxi-green?tabs=azureml-opendatasets) from Azure Open Datasets. The data has a parquet format and it covers years 2008-2021. The data files have the following folder structure on a publicly accessible blob storage account:
98+
In this quickstart, you create a Table (`mltable`) of the [NYC Green Taxi Data](../open-datasets/dataset-taxi-green.md?tabs=azureml-opendatasets) from Azure Open Datasets. The data has a parquet format and it covers years 2008-2021. The data files have the following folder structure on a publicly accessible blob storage account:
9999

100100
```text
101101
/
@@ -432,7 +432,7 @@ ml_client.jobs.create_or_update(job)
432432

433433
## Authoring MLTable Files
434434

435-
To directly create the MLTable file, we recommend that you use the `mltable` Python SDK to author your MLTable files - as shown in the [Azure Machine Learning Tables Quickstart](#azure-ml-tables-quickstart) - instead of a text editor. In this section, we outline the capabilities in the `mltable` Python SDK.
435+
To directly create the MLTable file, we recommend that you use the `mltable` Python SDK to author your MLTable files - as shown in the [Azure Machine Learning Tables Quickstart](./how-to-mltable.md#azure-ml-tables-quickstart) - instead of a text editor. In this section, we outline the capabilities in the `mltable` Python SDK.
436436

437437
### Supported file types
438438

@@ -446,7 +446,7 @@ You can create an MLTable using a range of different file types:
446446
|JSON Lines | `from_json_lines_files(paths=[path])` |
447447
|Paths<br>(Create a table with a column of paths to stream) | `from_paths(paths=[path])` |
448448

449-
For more information, read the [MLTable reference documentation](https://learn.microsoft.com/python/api/mltable/mltable.mltable.mltable?view=azure-ml-py)
449+
For more information, read the [MLTable reference documentation](/python/api/mltable/mltable.mltable.mltable)
450450

451451

452452
### Defining paths
@@ -540,7 +540,7 @@ tbl = mltable.from_delimited_files(paths=paths)
540540

541541
### Supported data loading transformations
542542

543-
Find full, up-to-date details of the supported data loading transformations in the [MLTable reference documentation](https://learn.microsoft.com/python/api/mltable/mltable.mltable.mltable?view=azure-ml-py).
543+
Find full, up-to-date details of the supported data loading transformations in the [MLTable reference documentation](/python/api/mltable/mltable.mltable.mltable).
544544

545545
## Examples
546546
Examples in the [Azure Machine Learning examples GitHub repo](https://github.com/Azure/azureml-examples/tree/main/sdk/python/using-mltable) examples became the basis for the code snippets in this article. Use this command to clone the repository to your development environment:

0 commit comments

Comments
 (0)