You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
## Fetch data for running experiment on remote compute
101
102
@@ -125,14 +126,14 @@ Use custom validation dataset if random split is not acceptable, usually time se
125
126
## Compute to run experiment
126
127
127
128
Next determine where the model will be trained. An automated machine learning training experiment can run on the following compute options:
128
-
*Your local machine such as a local desktop or laptop – Generally when you have small dataset and you are still in the exploration stage.
129
-
*A remote machine in the cloud – [Azure Machine Learning Managed Compute](concept-compute-target.md#amlcompute) is a managed service that enables the ability to train machine learning models on clusters of Azure virtual machines.
129
+
* Your local machine such as a local desktop or laptop – Generally when you have small dataset and you are still in the exploration stage.
130
+
* A remote machine in the cloud – [Azure Machine Learning Managed Compute](concept-compute-target.md#amlcompute) is a managed service that enables the ability to train machine learning models on clusters of Azure virtual machines.
130
131
131
-
See this [GitHub site](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning) for examples of notebooks with local and remote compute targets.
132
+
See this [GitHub site](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/automated-machine-learning) for examples of notebooks with local and remote compute targets.
132
133
133
-
*An Azure Databricks cluster in your Azure subscription. You can find more details here - [Setup Azure Databricks cluster for Automated ML](how-to-configure-environment.md#azure-databricks)
134
+
* An Azure Databricks cluster in your Azure subscription. You can find more details here - [Setup Azure Databricks cluster for Automated ML](how-to-configure-environment.md#azure-databricks)
134
135
135
-
See this [GitHub site](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/automl) for examples of notebooks with Azure Databricks.
136
+
See this [GitHub site](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/azure-databricks/automl) for examples of notebooks with Azure Databricks.
136
137
137
138
<aname='configure-experiment'></a>
138
139
@@ -142,30 +143,30 @@ There are several options that you can use to configure your automated machine l
142
143
143
144
Some examples include:
144
145
145
-
1. Classification experiment using AUC weighted as the primary metric with experiment timeout minutes set to 30 minutes and2 cross-validation folds.
146
-
147
-
```python
148
-
automl_classifier=AutoMLConfig(
149
-
task='classification',
150
-
primary_metric='AUC_weighted',
151
-
experiment_timeout_minutes=30,
152
-
blacklist_models=['XGBoostClassifier'],
153
-
training_data=train_data,
154
-
label_column_name=label,
155
-
n_cross_validations=2)
156
-
```
157
-
2. Below is an example of a regression experiment set to end after 60 minutes with five validation cross folds.
158
-
159
-
```python
160
-
automl_regressor= AutoMLConfig(
161
-
task='regression',
162
-
experiment_timeout_minutes=60,
163
-
whitelist_models=['kNN regressor'],
164
-
primary_metric='r2_score',
165
-
training_data=train_data,
166
-
label_column_name=label,
167
-
n_cross_validations=5)
168
-
```
146
+
1. Classification experiment using AUC weighted as the primary metric with experiment timeout minutes set to 30 minutes and 2 cross-validation folds.
147
+
148
+
```python
149
+
automl_classifier=AutoMLConfig(
150
+
task='classification',
151
+
primary_metric='AUC_weighted',
152
+
experiment_timeout_minutes=30,
153
+
blacklist_models=['XGBoostClassifier'],
154
+
training_data=train_data,
155
+
label_column_name=label,
156
+
n_cross_validations=2)
157
+
```
158
+
2. Below is an example of a regression experiment set to end after 60 minutes with five validation cross folds.
159
+
160
+
```python
161
+
automl_regressor = AutoMLConfig(
162
+
task='regression',
163
+
experiment_timeout_minutes=60,
164
+
whitelist_models=['kNN regressor'],
165
+
primary_metric='r2_score',
166
+
training_data=train_data,
167
+
label_column_name=label,
168
+
n_cross_validations=5)
169
+
```
169
170
170
171
The three different `task` parameter values (the third task-type is `forecasting`, and uses a similar algorithm pool as `regression` tasks) determine the list of models to apply. Use the `whitelist` or `blacklist` parameters to further modify iterations with the available models to include or exclude. The list of supported models can be found on [SupportedModels Class](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels) for ([Classification](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.classification), [Forecasting](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.forecasting), and [Regression](https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.constants.supportedmodels.regression)).
0 commit comments