Skip to content

Commit cc09f8b

Browse files
Apply suggestions from PR review
1 parent 77174f4 commit cc09f8b

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

articles/machine-learning/how-to-auto-train-image-models.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -369,7 +369,7 @@ Instance segmentation | **MaskRCNN ResNet FPN**| `maskrcnn_resnet18_fpn` <br> `m
369369

370370
#### Supported model architectures - HuggingFace and MMDetection (preview)
371371

372-
With the new backend that runs on [AzureML Pipelines](concept-ml-pipelines.md), you can additionally use any image classification model from the [HuggingFace Hub](https://huggingface.co/models?pipeline_tag=image-classification&library=transformers) which is part of the transformers library (such as microsoft/beit-base-patch16-224), as well as any object detection or instance segmentation model from the [MMDetection Version 2.28.2 Model Zoo](https://mmdetection.readthedocs.io/en/v2.28.2/model_zoo.html) (such as atss_r50_fpn_1x_coco).
372+
With the new backend that runs on [Azure Machine Learning pipelines](concept-ml-pipelines.md), you can additionally use any image classification model from the [HuggingFace Hub](https://huggingface.co/models?pipeline_tag=image-classification&library=transformers) which is part of the transformers library (such as microsoft/beit-base-patch16-224), as well as any object detection or instance segmentation model from the [MMDetection Version 2.28.2 Model Zoo](https://mmdetection.readthedocs.io/en/v2.28.2/model_zoo.html) (such as atss_r50_fpn_1x_coco).
373373

374374
In addition to supporting any model from HuggingFace Transfomers and MMDetection 2.28.2, we also offer a list of curated models from these libraries in the azureml-staging registry. These curated models have been tested thoroughly and use default hyperparameters selected from extensive benchmarking to ensure effective training. The table below summarizes these curated models.
375375

@@ -379,7 +379,7 @@ Image classification<br> (multi-class and multi-label)| **BEiT** <br> **ViT** <b
379379
Object Detection | **Sparse R-CNN** <br> **Deformable DETR** <br> **VFNet** <br> **YOLOF** <br> **Swin** | [`sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco`](https://ml.azure.com/registries/azureml/models/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/version/3)<br> [`sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco`](https://ml.azure.com/registries/azureml/models/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/version/3) <br> [`deformable_detr_twostage_refine_r50_16x2_50e_coco`](https://ml.azure.com/registries/azureml/models/deformable_detr_twostage_refine_r50_16x2_50e_coco/version/3) <br> [`vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco`](https://ml.azure.com/registries/azureml/models/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco/version/3) <br> [`vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco`](https://ml.azure.com/registries/azureml/models/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco/version/3) <br> [`yolof_r50_c5_8x8_1x_coco`](https://ml.azure.com/registries/azureml/models/yolof_r50_c5_8x8_1x_coco/version/3)
380380
Instance Segmentation | **Swin** | [`mask_rcnn_swin-t-p4-w7_fpn_1x_coco`](https://ml.azure.com/registries/azureml/models/mask_rcnn_swin-t-p4-w7_fpn_1x_coco/version/3)
381381

382-
We constantly update the list of curated models. You can get the most up to date list of the curated models for a given task using the Python SDK:
382+
We constantly update the list of curated models. You can get the most up-to-date list of the curated models for a given task using the Python SDK:
383383
```
384384
credential = DefaultAzureCredential()
385385
ml_client = MLClient(credential, registry_name="azureml-staging")
@@ -393,7 +393,7 @@ for model in models:
393393

394394
classification_models
395395
```
396-
output:
396+
Output:
397397
```
398398
['google-vit-base-patch16-224',
399399
'microsoft-swinv2-base-patch4-window12-192-22k',

0 commit comments

Comments
 (0)