You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/planetary-computer/data-visualization-samples.md
+11-11Lines changed: 11 additions & 11 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -33,9 +33,9 @@ Before using these examples, you should have:
33
33
34
34
Each example in this gallery includes:
35
35
36
-
1.**Description and context** - Information about the data source and visualization approach
37
-
2.**Visual example** - Screenshot of the rendered data in the Explorer
38
-
3.**Complete configuration settings** organized in tabs:
36
+
-**Description and context** - Information about the data source and visualization approach
37
+
-**Visual example** - Screenshot of the rendered data in the Explorer
38
+
-**Complete configuration settings** organized in tabs:
39
39
-**Mosaic** - How to filter and select items for display
40
40
-**Render Options** - How to style and visualize the data
41
41
-**Tile Settings** - How to optimize display parameters
@@ -52,7 +52,7 @@ To apply these examples to your own data:
52
52
53
53
## Sentinel-2-l2a collection configuration
54
54
55
-
[](media/sentinel-2-imagery.png#lightbox)
55
+
[](media/sentinel-2-imagery.png#lightbox)
56
56
57
57
[Sentinel-2](https://planetarycomputer.microsoft.com/dataset/sentinel-2-l2) is a high-resolution, multi-spectral imaging mission from the European Space Agency (ESA) as part of the Copernicus Program.
58
58
@@ -768,7 +768,7 @@ The render configuration directly references these asset keys to create differen
768
768
769
769
## The National Agriculture Imagery Program collection configuration
770
770
771
-
[](media/aerial-imagery.png#lightbox)
771
+
[](media/aerial-imagery.png#lightbox)
772
772
[The National Agriculture Imagery Program](https://planetarycomputer.microsoft.com/dataset/naip) (NAIP) provides high-resolution aerial imagery across the United States. The USDA Farm Service Agency captures this NAIP imagery at least every three years.
773
773
774
774
NAIP data offers excellent detail with spatial resolutions ranging from 0.3 meter to 1 meter per pixel. The imagery is stored in cloud-optimized GeoTIFF format for efficient access and processing.
@@ -811,10 +811,10 @@ The mosaic configuration defines how images are combined when displayed in the E
811
811
This render configuration defines three different ways to visualize NAIP aerial imagery in the Explorer. Each entry describes a different visualization technique, such as **Natural color** (what you'd see with your eyes), **Color infrared** (to highlight vegetation), or **Normalized Difference Vegetation Index (NDVI)** (to measure vegetation health).
812
812
813
813
NAIP imagery contains four spectral bands stored in a single multi-band asset called "image":
814
-
1.**Band 1**: Red
815
-
2.**Band 2**: Green
816
-
3.**Band 3**: Blue
817
-
4.**Band 4**: Near Infrared (NIR)
814
+
-**Band 1**: Red
815
+
-**Band 2**: Green
816
+
-**Band 3**: Blue
817
+
-**Band 4**: Near Infrared (NIR)
818
818
819
819
The `options` string specifies how to visualize the data:
820
820
@@ -1129,7 +1129,7 @@ The STAC Collection configuration defines the core metadata for this NAIP collec
1129
1129
1130
1130
## Umbra SAR imagery collection configuration
1131
1131
1132
-
[](media/radar-imagery.png#lightbox)
1132
+
[](media/radar-imagery.png#lightbox)
1133
1133
1134
1134
[Umbra's Synthetic Aperture Radar (SAR) imagery](https://umbra.space/open-data/) uses radar signals transmitted from satellites to create high-resolution images of the Earth's surface, capable of seeing through clouds, darkness, and weather conditions that would block traditional optical satellites. This SAR technology is valuable for monitoring infrastructure, detecting changes in urban areas, tracking ships and vehicles, and assessing damage after natural disasters, as it can capture detailed images at any time of day or night regardless of weather conditions.
1135
1135
@@ -1353,7 +1353,7 @@ This GEC asset definition is directly referenced in the render configuration via
1353
1353
1354
1354
## Impact Observatory Land Use/Land Cover 9-class collection configuration
1355
1355
1356
-
[](media/land-cover-map.png#lightbox)
1356
+
[](media/land-cover-map.png#lightbox)
1357
1357
1358
1358
The [Impact Observatory Land Use/Land Cover 9-Class dataset](https://www.impactobservatory.com/) provides annual global maps of land use and land cover (LULC). [This dataset](https://planetarycomputer.microsoft.com/dataset/group/io-land-cover) was generated using billions of human-labeled pixels to train a deep learning model for land classification, applied to Sentinel-2 imagery at 10-meter resolution.
0 commit comments