Skip to content

Commit cc0f813

Browse files
committed
Address editor feedback: Add periods to alt-text and convert non-sequential lists to bullets
- Add periods to alt-text descriptions for screen reader accessibility (lines 55, 771, 1132, 1356) - Convert numbered lists to bullet lists where items aren't strictly sequential (lines 36-38, 814-817)
1 parent 64ca311 commit cc0f813

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

articles/planetary-computer/data-visualization-samples.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -33,9 +33,9 @@ Before using these examples, you should have:
3333

3434
Each example in this gallery includes:
3535

36-
1. **Description and context** - Information about the data source and visualization approach
37-
2. **Visual example** - Screenshot of the rendered data in the Explorer
38-
3. **Complete configuration settings** organized in tabs:
36+
- **Description and context** - Information about the data source and visualization approach
37+
- **Visual example** - Screenshot of the rendered data in the Explorer
38+
- **Complete configuration settings** organized in tabs:
3939
- **Mosaic** - How to filter and select items for display
4040
- **Render Options** - How to style and visualize the data
4141
- **Tile Settings** - How to optimize display parameters
@@ -52,7 +52,7 @@ To apply these examples to your own data:
5252

5353
## Sentinel-2-l2a collection configuration
5454

55-
[ ![Screenshot of Sentinel-2-l2a data visualization](media/sentinel-2-imagery.png) ](media/sentinel-2-imagery.png#lightbox)
55+
[ ![Screenshot of Sentinel-2-l2a data visualization.](media/sentinel-2-imagery.png) ](media/sentinel-2-imagery.png#lightbox)
5656

5757
[Sentinel-2](https://planetarycomputer.microsoft.com/dataset/sentinel-2-l2) is a high-resolution, multi-spectral imaging mission from the European Space Agency (ESA) as part of the Copernicus Program.
5858

@@ -768,7 +768,7 @@ The render configuration directly references these asset keys to create differen
768768

769769
## The National Agriculture Imagery Program collection configuration
770770

771-
[ ![Screenshot of The National Agriculture Imagery Program data visualization](media/aerial-imagery.png) ](media/aerial-imagery.png#lightbox)
771+
[ ![Screenshot of The National Agriculture Imagery Program data visualization.](media/aerial-imagery.png) ](media/aerial-imagery.png#lightbox)
772772
[The National Agriculture Imagery Program](https://planetarycomputer.microsoft.com/dataset/naip) (NAIP) provides high-resolution aerial imagery across the United States. The USDA Farm Service Agency captures this NAIP imagery at least every three years.
773773

774774
NAIP data offers excellent detail with spatial resolutions ranging from 0.3 meter to 1 meter per pixel. The imagery is stored in cloud-optimized GeoTIFF format for efficient access and processing.
@@ -811,10 +811,10 @@ The mosaic configuration defines how images are combined when displayed in the E
811811
This render configuration defines three different ways to visualize NAIP aerial imagery in the Explorer. Each entry describes a different visualization technique, such as **Natural color** (what you'd see with your eyes), **Color infrared** (to highlight vegetation), or **Normalized Difference Vegetation Index (NDVI)** (to measure vegetation health).
812812

813813
NAIP imagery contains four spectral bands stored in a single multi-band asset called "image":
814-
1. **Band 1**: Red
815-
2. **Band 2**: Green
816-
3. **Band 3**: Blue
817-
4. **Band 4**: Near Infrared (NIR)
814+
- **Band 1**: Red
815+
- **Band 2**: Green
816+
- **Band 3**: Blue
817+
- **Band 4**: Near Infrared (NIR)
818818

819819
The `options` string specifies how to visualize the data:
820820

@@ -1129,7 +1129,7 @@ The STAC Collection configuration defines the core metadata for this NAIP collec
11291129

11301130
## Umbra SAR imagery collection configuration
11311131

1132-
[ ![Screenshot of Umbra SAR Imagery data visualization](media/radar-imagery.png) ](media/radar-imagery.png#lightbox)
1132+
[ ![Screenshot of Umbra SAR Imagery data visualization.](media/radar-imagery.png) ](media/radar-imagery.png#lightbox)
11331133

11341134
[Umbra's Synthetic Aperture Radar (SAR) imagery](https://umbra.space/open-data/) uses radar signals transmitted from satellites to create high-resolution images of the Earth's surface, capable of seeing through clouds, darkness, and weather conditions that would block traditional optical satellites. This SAR technology is valuable for monitoring infrastructure, detecting changes in urban areas, tracking ships and vehicles, and assessing damage after natural disasters, as it can capture detailed images at any time of day or night regardless of weather conditions.
11351135

@@ -1353,7 +1353,7 @@ This GEC asset definition is directly referenced in the render configuration via
13531353

13541354
## Impact Observatory Land Use/Land Cover 9-class collection configuration
13551355

1356-
[ ![Screenshot of ESP-io-lulc-9-class data visualization](media/land-cover-map.png) ](media/land-cover-map.png#lightbox)
1356+
[ ![Screenshot of ESP-io-lulc-9-class data visualization.](media/land-cover-map.png) ](media/land-cover-map.png#lightbox)
13571357

13581358
The [Impact Observatory Land Use/Land Cover 9-Class dataset](https://www.impactobservatory.com/) provides annual global maps of land use and land cover (LULC). [This dataset](https://planetarycomputer.microsoft.com/dataset/group/io-land-cover) was generated using billions of human-labeled pixels to train a deep learning model for land classification, applied to Sentinel-2 imagery at 10-meter resolution.
13591359

0 commit comments

Comments
 (0)