You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
You can create and register TabularDatasets from a pandas or spark dataframe.
331
+
## Create a dataset from pandas dataframe
334
332
335
333
To create a TabularDataset from an in memory pandas dataframe
336
334
use the [`register_pandas_dataframe()`](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactoryy#register-pandas-dataframe-dataframe--target--name--description-none--tags-none--show-progress-true-) method. This method registers the TabularDataset to the workspace and uploads data to your underlying storage, which incurs storage costs.
@@ -345,18 +343,10 @@ datastore = Datastore.get(ws, '<name of your datastore>')
You can also create a TabularDataset from a readily available spark dataframe with the
350
-
[`register_spark_dataframe()`](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory#register-spark-dataframe-dataframe--target--name--description-none--tags-none--show-progress-true-) method. This method registers the TabularDataset to the workspace and uploads data to your underlying storage, which incurs storage costs.
351
-
352
-
```python
353
-
from azureml.core import Workspace, Datastore, Dataset
354
-
355
-
ws = Workspace.from_config()
356
-
datastore = Datastore.get(ws, '<name of your datastore>')
> Create and register a TabularDataset from an in memory spark dataframe or a dask dataframe with the public preview methods, [`register_spark_dataframe()`](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory##register-spark-dataframe-dataframe--target--name--description-none--tags-none--show-progress-true-) and [`register_dask_dataframe()`](/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory#register-dask-dataframe-dataframe--target--name--description-none--tags-none--show-progress-true-). These methods are [experimental](/python/api/overview/azure/ml/#stable-vs-experimental) preview features, and may change at any time.
348
+
>
349
+
> These methods upload data to your underlying storage, and as a result incur storage costs.
0 commit comments