Skip to content

Commit cf1146f

Browse files
committed
add v2 include
1 parent 396eb20 commit cf1146f

File tree

2 files changed

+12
-0
lines changed

2 files changed

+12
-0
lines changed

articles/machine-learning/how-to-autoscale-endpoints.md

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,8 @@ To enable autoscale for an endpoint, you first define an autoscale profile. This
3434

3535
# [Azure CLI](#tab/azure-cli)
3636

37+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
38+
3739
The following snippet sets the endpoint and deployment names:
3840

3941
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-moe-autoscale.sh" ID="set_endpoint_deployment_name" :::
@@ -76,6 +78,8 @@ A common scaling out rule is one that increases the number of VM instances when
7678

7779
# [Azure CLI](#tab/azure-cli)
7880

81+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
82+
7983
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-moe-autoscale.sh" ID="scale_out_on_cpu_util" :::
8084

8185
The rule is part of the `my-scale-settings` profile (`autoscale-name` matches the `name` of the profile). The value of its `condition` argument says the rule should trigger when "The average CPU consumption among the VM instances exceeds 70% for five minutes." When that condition is satisfied, two more VM instances are allocated.
@@ -104,6 +108,8 @@ When load is light, a scaling in rule can reduce the number of VM instances. The
104108

105109
# [Azure CLI](#tab/azure-cli)
106110

111+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
112+
107113
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-moe-autoscale.sh" ID="scale_in_on_cpu_util" :::
108114

109115
# [Portal](#tab/azure-portal)
@@ -131,6 +137,8 @@ The previous rules applied to the deployment. Now, add a rule that applies to th
131137

132138
# [Azure CLI](#tab/azure-cli)
133139

140+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
141+
134142
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-moe-autoscale.sh" ID="scale_up_on_request_latency" :::
135143

136144
# [Portal](#tab/azure-portal)
@@ -157,6 +165,8 @@ You can also create rules that apply only on certain days or at certain times. I
157165

158166
# [Azure CLI](#tab/azure-cli)
159167

168+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
169+
160170
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-moe-autoscale.sh" ID="weekend_profile" :::
161171

162172
# [Portal](#tab/azure-portal)

articles/machine-learning/how-to-train-cli.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,8 @@ ms.custom: devx-track-azurecli, devplatv2
1515

1616
# Train models with the CLI (v2) (preview)
1717

18+
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
19+
1820
The Azure Machine Learning CLI (v2) is an Azure CLI extension enabling you to accelerate the model training process while scaling up and out on Azure compute, with the model lifecycle tracked and auditable.
1921

2022
Training a machine learning model is typically an iterative process. Modern tooling makes it easier than ever to train larger models on more data faster. Previously tedious manual processes like hyperparameter tuning and even algorithm selection are often automated. With the Azure Machine Learning CLI (v2), you can track your jobs (and models) in a [workspace](concept-workspace.md) with hyperparameter sweeps, scale-up on high-performance Azure compute, and scale-out utilizing distributed training.

0 commit comments

Comments
 (0)