Skip to content

Commit d45e5ea

Browse files
committed
table placement 2
1 parent 3d95bae commit d45e5ea

File tree

1 file changed

+0
-28
lines changed

1 file changed

+0
-28
lines changed

articles/machine-learning/how-to-select-algorithms.md

Lines changed: 0 additions & 28 deletions
Original file line numberDiff line numberDiff line change
@@ -143,34 +143,6 @@ Feature selection refers to the process of applying statistical tests to inputs,
143143

144144
You can also use the [Permutation Feature Importance module](https://docs.microsoft.com/azure/machine-learning/algorithm-module-reference/permutation-feature-importance?WT.mc_id=docs-article-lazzeri) to compute a set of feature importance scores for your dataset. You can then leverage these scores to help you determine the best features to use in a model.
145145

146-
## Additional notes
147-
148-
Some learning algorithms make particular assumptions about the structure of the data or the desired results. If you can find one that fits your needs, it can give you more useful results, more accurate predictions, or faster training times.
149-
150-
The following table summarizes some of the most important characteristics of algorithms from the classification, regression and clustering families:
151-
152-
| **Algorithm** | **Accuracy** | **Training time** | **Linearity** | **Parameters** | **Notes** |
153-
| --- |:---:|:---:|:---:|:---:| --- |
154-
| **Classification family** | | | | | |
155-
| [Two-Class logistic regression](azure/machine-learning/algorithm-module-reference/two-class-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
156-
| [Two-class decision forest](azure/machine-learning/algorithm-module-reference/two-class-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times. Suggest not working with One-vs-All Multiclass, because of slower scoring times caused by tread locking in accumulating tree predictions |
157-
| [Two-class boosted decision tree](azure/machine-learning/algorithm-module-reference/two-class-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
158-
| [Two-class neural network](azure/machine-learning/algorithm-module-reference/two-class-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
159-
| [Two-class averaged perceptron](azure/machine-learning/algorithm-module-reference/two-class-averaged-perceptron?WT.mc_id=docs-article-lazzeri) |Good |Moderate |Yes |4 | |
160-
| [Two-class support vector machine](azure/machine-learning/algorithm-module-reference/two-class-support-vector-machine?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |5 |Good for large feature sets |
161-
| [Multiclass logistic regression](azure/machine-learning/algorithm-module-reference/multiclass-logistic-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
162-
| [Multiclass decision forest](azure/machine-learning/algorithm-module-reference/multiclass-decision-forest?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |5 |Shows slower scoring times |
163-
| [Multiclass boosted decision tree](azure/machine-learning/algorithm-module-reference/multiclass-boosted-decision-tree?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 | Tends to improve accuracy with some small risk of less coverage |
164-
| [Multiclass neural network](azure/machine-learning/algorithm-module-reference/multiclass-neural-network?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
165-
| [One-vs-all multiclass](azure/machine-learning/algorithm-module-reference/one-vs-all-multiclass?WT.mc_id=docs-article-lazzeri) | - | - | - | - |See properties of the two-class method selected |
166-
| **[Regression family]** | | | | | |
167-
| [Linear regression](azure/machine-learning/algorithm-module-reference/linear-regression?WT.mc_id=docs-article-lazzeri) |Good |Fast |Yes |4 | |
168-
| [Decision forest regression](azure/machine-learning/algorithm-module-reference/decision-forest-regression?WT.mc_id=docs-article-lazzeri)|Excellent |Moderate |No |5 | |
169-
| [Boosted decision tree regression](azure/machine-learning/algorithm-module-reference/boosted-decision-tree-regression?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |No |6 |Large memory footprint |
170-
| [Neural network regression](azure/machine-learning/algorithm-module-reference/neural-network-regression?WT.mc_id=docs-article-lazzeri) |Good |Moderate |No |8 | |
171-
| **Clustering family** | | | | | |
172-
| [K-means clustering](/azure/machine-learning/algorithm-module-reference/k-means-clustering?WT.mc_id=docs-article-lazzeri) |Excellent |Moderate |Yes |8 |A clustering algorithm |
173-
174146
## Next steps
175147

176148
- [Learn more about Azure Machine Learning designer](https://docs.microsoft.com/azure/machine-learning/service/concept-designer?WT.mc_id=docs-article-lazzeri)

0 commit comments

Comments
 (0)