Skip to content

Commit d65c9dc

Browse files
authored
Merge pull request #115048 from VasiyaKrishnan/AzureSqlEdgeTutorial
Azure sql edge tutorial
2 parents 0896d7d + e97c1f0 commit d65c9dc

File tree

6 files changed

+25
-33
lines changed

6 files changed

+25
-33
lines changed

articles/azure-sql-edge/configure.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -112,4 +112,4 @@ traceflag2 = 1204
112112
## Next step
113113

114114
- [Connect to Azure SQL Edge](connect.md)
115-
- [Building an end-to-end IoT solution with SQL Edge](deploy-azure-resources.md)
115+
- [Building an end-to-end IoT solution with SQL Edge](tutorial-deploy-azure-resources.md)

articles/azure-sql-edge/overview.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,4 +69,4 @@ Azure SQL Edge makes developing and maintaining applications easier and more pro
6969

7070
- [Deploy SQL Edge through Azure portal](deploy-portal.md)
7171
- [Machine Learning and Artificial Intelligence with SQL Edge](onnx-overview.md)
72-
- [Building an end-to-end IoT solution with SQL Edge](deploy-azure-resources.md)
72+
- [Building an end-to-end IoT solution with SQL Edge](tutorial-deploy-azure-resources.md)

articles/azure-sql-edge/toc.yml

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -21,12 +21,12 @@
2121
href: tutorial-sync-data-sync.md
2222
- name: Build an end-to-end IoT solution with SQL Edge
2323
items:
24-
- name: Set up resources for the tutorial
25-
href: deploy-azure-resources.md
26-
- name: Set up IoT Edge Modules and connections
27-
href: set-up-iot-edge-modules.md
28-
- name: Deploy ML model on SQL Edge using ONNX
29-
href: run-ml-model-on-sql-edge.md
24+
- name: Set up Azure resources
25+
href: tutorial-deploy-azure-resources.md
26+
- name: Set up IoT Edge Modules
27+
href: tutorial-set-up-iot-edge-modules.md
28+
- name: Deploy model to SQL Edge
29+
href: tutorial-run-ml-model-on-sql-edge.md
3030
- name: How to
3131
items:
3232
- name: DAC packages and Stream Analytics jobs

articles/azure-sql-edge/deploy-azure-resources.md renamed to articles/azure-sql-edge/tutorial-deploy-azure-resources.md

Lines changed: 7 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -15,16 +15,14 @@ In this tutorial, you will be predicting iron ore impurities as a % of Silica in
1515

1616
## Pre-requisite software to be installed
1717
1. If you don't have an Azure subscription, create a [free account](https://azure.microsoft.com/free/).
18-
2. Install [Visual Studio Professional/Enterprise](https://visualstudio.microsoft.com/vs/)
19-
3. Install [PowerShell 3.6.8](https://www.python.org/downloads/release/python-368/)
18+
2. Install [Python 3.6.8](https://www.python.org/downloads/release/python-368/)
2019
* Windows x86-x64 Executable Installer
2120
* Ensure to add python path to the PATH environment variables
22-
4. Install ["Microsoft Visual C++ 14.0" and build tools for Visual Studio](https://visualstudio.microsoft.com/downloads/) - Download can be located under "Tools For Visual Studio 2019"
23-
5. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567)
24-
6. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
25-
7. Open Azure Data Studio and configure Python for Notebooks. Details on how this can be accessed [here](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
26-
8. Install latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020)
27-
9. The below scripts require that the AZ PowerShell to be at the latest version (3.5.0, Feb 2020)
21+
3. Install [Microsoft ODBC Driver 17 for SQL Server](https://www.microsoft.com/download/details.aspx?id=56567)
22+
4. Install [Azure Data Studio](/sql/azure-data-studio/download-azure-data-studio/)
23+
5. Open Azure Data Studio and configure Python for Notebooks. Details on how this can be accessed [here](/sql/azure-data-studio/sql-notebooks#configure-python-for-notebooks).This step can take several minutes.
24+
6. Install latest version of [Azure CLI](https://github.com/Azure/azure-powershell/releases/tag/v3.5.0-February2020)
25+
7. The below scripts require that the AZ PowerShell to be at the latest version (3.5.0, Feb 2020)
2826

2927
## Deploying Azure resources using PowerShell Script
3028

@@ -236,7 +234,6 @@ az vm run-command invoke -g $ResourceGroup -n $EdgeDeviceId --command-id RunShe
236234
```powershell
237235
az ml workspace create -w $MyWorkSpace -g $ResourceGroup
238236
```
239-
240237
## Next Steps
241238

242-
- [Setting up IoT Edge modules and connections](set-up-iot-edge-modules.md)
239+
* [Set up IoT Edge Modules](tutorial-set-up-iot-edge-modules.md)

articles/azure-sql-edge/run-ml-model-on-sql-edge.md renamed to articles/azure-sql-edge/tutorial-run-ml-model-on-sql-edge.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ In this tutorial we will,
3535
4. In the file section, open a new notebook or use the keyboard shortcut Alt + Windows + N. Set the kernel to Python 3 before executing the below section.
3636

3737
## Predict Iron Ore Impurities (% of Silica) with ONNX in Azure SQL Edge
38-
The following python code can be collated in jupyter notebook and run on Azure Data Studio. Before we begin with the experiment, we need to install and import the below packages.
38+
The following python code can be collated in Jupyter notebook and run on Azure Data Studio. Before we begin with the experiment, we need to install and import the below packages.
3939
```python
4040
!pip install azureml.core -q
4141
!pip install azureml.train.automl -q
@@ -131,7 +131,7 @@ We proceed with loading the model in Azure SQL Edge database for local scoring
131131
```python
132132
## Load the Model into a SQL Database.
133133
## Define the Connection string parameters. These connection strings will be used later also in the demo.
134-
server = '40.69.153.211,1600' # SQL Server IP address
134+
server = '<SQL Server IP address>'
135135
username = 'sa' # SQL Server username
136136
password = '<SQL Server password>'
137137
database = 'IronOreSilicaPrediction'
@@ -151,7 +151,7 @@ conn.close()
151151
Finally, we use the Azure SQL Edge model to perform prediction using the trained model
152152
```python
153153
## Define the Connection string parameters. These connection strings will be used later also in the demo.
154-
server = '40.69.153.211,1600' # SQL Server IP address
154+
server = '<SQL Server IP address>'
155155
username = 'sa' # SQL Server username
156156
password = '<SQL Server password>'
157157
database = 'IronOreSilicaPrediction'

articles/azure-sql-edge/set-up-iot-edge-modules.md renamed to articles/azure-sql-edge/tutorial-set-up-iot-edge-modules.md

Lines changed: 7 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
title: Set up IoT Edge Modules
3-
description: In this section, we will set up IoT edge modules and connections
3+
description: In this section, we will set up IoT Edge modules and connections
44
keywords:
55
services: sql-database-edge
66
ms.service: sql-database-edge
@@ -14,7 +14,7 @@ ms.date: 05/19/2020
1414

1515
In this tutorial, we will be setting up the below IoT Edge modules
1616
1. Azure SQL Edge
17-
2. A data generator module
17+
2. Data generator IoT Edge module
1818

1919
Before proceeding, create an Azure Stream Analytics Module that will be used in the tutorial for predicting Iron Ore impurities. You can learn more about using streaming jobs with SQL Edge [here](https://docs.microsoft.com/azure/sql-database-edge/stream-analytics#using-streaming-jobs-with-sql-database-edge)
2020

@@ -28,14 +28,16 @@ Event Serialization format|JSON
2828
Encoding|UTF-8
2929
Event compression type|None
3030

31-
2. For creating the **output**, click '+Add' and choose SQL Database. Fill the details section as indicated below,
31+
2. For creating the **output**, click '+Add' and choose SQL Database. For the purpose of this tutorial, fill the details section as indicated below,
32+
> [!NOTE]
33+
> The password specified in this sections need to be specified for SQL SA password when deploying the SQL Edge module in section **"Deploying the Azure SQL Edge module"**
3234
3335
Field|Value
3436
-----|-----
3537
Database|IronOreSilicaPrediction
3638
Server name|tcp:.,1433
3739
Username|sa
38-
Password|YourStrongPasswrod
40+
Password|Specify a strong password
3941
Table|IronOreMeasurements1
4042

4143
3. Navigate to the **Query** Section and ensure that the query is set up as below
@@ -103,14 +105,7 @@ FROM /messages/modules/ASEDataGenerator/outputs/IronOreMeasures INTO BrokeredEnd
103105
}
104106
}
105107
```
106-
Example
107-
```json
108-
{
109-
"SqlPackage": "https://ASEstorage.blob.core.windows.net/sqldatabasedacpac/SQLDatabasedacpac.zip?sp=r&st=2020-04- 01T20:01:49Z&se=2021-01-01T05:01:49Z&spr=https&sv=2019-02-02&sr=b&sig=AH71glRTfULcyzJZKlgezfa0Epjfe7zv10mF%2BNzEIn0%3D",
110-
"ASAJobInfo": "https://ASEstorage.blob.core.windows.net/bootdiagnostics-ironorepr-6984a2b8-6901-41a8-b3a6-49f86276e63d/ASAEdgeJobs/1278e9b9-94af-41ec-90b3-8172560340c1/e9bb25a6-d0a1-422b-9e29-4305a89e92f2/ASAEdgeJobDefinition.zip?sv=2018-03-28&sr=b&sig=KQZqR7diisByoUkCK6pEA3VJm%2FI2wHWEPDL1OwjMTJ8%3D&st=2020-04-01T20%3A21%3A20Z&se=2023-04-01T20%3A31%3A20Z&sp=r"
111-
}
112-
```
113108

114109
## Next Steps
115110

116-
- [Deploying ML model on Azure SQL Edge using ONNX](run-ml-model-on-sql-edge.md)
111+
* [Deploying ML model on Azure SQL Edge using ONNX ](tutorial-run-ml-model-on-sql-edge.md)

0 commit comments

Comments
 (0)