Skip to content

Commit d97445f

Browse files
committed
Fix Python/CLI tabs
1 parent 546005b commit d97445f

7 files changed

+49
-49
lines changed

articles/machine-learning/concept-azure-machine-learning-v2.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ The workspace is the top-level resource for Azure Machine Learning, providing a
4040

4141
### Create a workspace
4242

43-
### [CLI](#tab/cli)
43+
### [Azure CLI](#tab/cli)
4444

4545
To create a workspace using CLI v2, use the following command:
4646

@@ -81,7 +81,7 @@ A compute is a designated compute resource where you run your job or host your e
8181
* **Inference cluster** - used to deploy trained machine learning models to Azure Kubernetes Service. You can create an Azure Kubernetes Service (AKS) cluster from your Azure ML workspace, or attach an existing AKS cluster.
8282
* **Attached compute** - You can attach your own compute resources to your workspace and use them for training and inference.
8383

84-
### [CLI](#tab/cli)
84+
### [Azure CLI](#tab/cli)
8585

8686
To create a compute using CLI v2, use the following command:
8787

@@ -126,7 +126,7 @@ Azure Machine Learning datastores securely keep the connection information to yo
126126
* Azure Data Lake
127127
* Azure Data Lake Gen2
128128

129-
### [CLI](#tab/cli)
129+
### [Azure CLI](#tab/cli)
130130

131131
To create a datastore using CLI v2, use the following command:
132132

@@ -171,7 +171,7 @@ Azure machine learning models consist of the binary file(s) that represent a mac
171171

172172
### Creating a model
173173

174-
### [CLI](#tab/cli)
174+
### [Azure CLI](#tab/cli)
175175

176176
To create a model using CLI v2, use the following command:
177177

@@ -221,7 +221,7 @@ In custom environments, you're responsible for setting up your environment and i
221221

222222
### Create an Azure ML custom environment
223223

224-
### [CLI](#tab/cli)
224+
### [Azure CLI](#tab/cli)
225225

226226
To create an environment using CLI v2, use the following command:
227227

articles/machine-learning/how-to-attach-kubernetes-to-workspace.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ Otherwise, if a user-assigned managed identity is specified in Azure Machine Lea
3737
Azure Relay resource is created during the extension deployment under the same Resource Group as the Arc-enabled Kubernetes cluster.
3838

3939

40-
### [CLI](#tab/cli)
40+
### [Azure CLI](#tab/cli)
4141

4242
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
4343

@@ -61,7 +61,7 @@ Set the `--type` argument to `Kubernetes`. Use the `identity_type` argument to e
6161
> `--user-assigned-identities` is only required for `UserAssigned` managed identities. Although you can provide a list of comma-separated user managed identities, only the first one is used when you attach your cluster.
6262
>
6363
> Compute attach won't create the Kubernetes namespace automatically or validate whether the kubernetes namespace existed. You need to verify that the specified namespace exists in your cluster, otherwise, any AzureML workloads submitted to this compute will fail.
64-
### [Python](#tab/python)
64+
### [Python SDK](#tab/python)
6565

6666
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
6767

articles/machine-learning/how-to-create-data-assets.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ When you create a data asset in Azure Machine Learning, you'll need to specify a
6666

6767
Below shows you how to create a *folder* as an asset:
6868

69-
# [CLI](#tab/CLI)
69+
# [Azure CLI](#tab/cli)
7070

7171
Create a `YAML` file (`<file-name>.yml`):
7272

@@ -90,7 +90,7 @@ Next, create the data asset using the CLI:
9090
az ml data create -f <file-name>.yml
9191
```
9292

93-
# [Python-SDK](#tab/Python-SDK)
93+
# [Python SDK](#tab/Python-SDK)
9494

9595
You can create a data asset in Azure Machine Learning using the following Python Code:
9696

@@ -123,7 +123,7 @@ ml_client.data.create_or_update(my_data)
123123

124124
Below shows you how to create a *specific file* as a data asset:
125125

126-
# [CLI](#tab/CLI)
126+
# [Azure CLI](#tab/cli)
127127

128128
Sample `YAML` file `<file-name>.yml` for data in local path is as below:
129129

@@ -146,7 +146,7 @@ path: <uri>
146146
> az ml data create -f <file-name>.yml
147147
```
148148

149-
# [Python-SDK](#tab/Python-SDK)
149+
# [Python SDK](#tab/Python-SDK)
150150
```python
151151
from azure.ai.ml.entities import Data
152152
from azure.ai.ml.constants import AssetTypes
@@ -223,7 +223,7 @@ The `uri` parameter in `mltable.load()` should be a valid path to a local or clo
223223
Below shows you how to create an `mltable` data asset. The `path` can be any of the supported path formats outlined above.
224224

225225

226-
# [CLI](#tab/CLI)
226+
# [Azure CLI](#tab/cli)
227227

228228
Create a `YAML` file (`<file-name>.yml`):
229229

@@ -252,7 +252,7 @@ Next, create the data asset using the CLI:
252252
az ml data create -f <file-name>.yml
253253
```
254254

255-
# [Python-SDK](#tab/Python-SDK)
255+
# [Python SDK](#tab/Python-SDK)
256256

257257
You can create a data asset in Azure Machine Learning using the following Python Code:
258258

articles/machine-learning/how-to-deploy-automl-endpoint.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ To deploy using these files, you can use either the studio or the Azure CLI.
9696
1. Complete all the steps in wizard to create an online endpoint and deployment
9797

9898

99-
# [CLI](#tab/CLI)
99+
# [Azure CLI](#tab/cli)
100100

101101
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
102102

@@ -166,7 +166,7 @@ You'll need to modify this file to use the files you downloaded from the AutoML
166166
After you create a deployment, you can score it as described in [Invoke the endpoint to score data by using your model](how-to-deploy-managed-online-endpoints.md#invoke-the-endpoint-to-score-data-by-using-your-model).
167167
168168
169-
# [Python](#tab/python)
169+
# [Python SDK](#tab/python)
170170
171171
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
172172

articles/machine-learning/how-to-deploy-custom-container.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -40,7 +40,7 @@ Custom container deployments can use web servers other than the default Python F
4040

4141
* To deploy locally, you must have [Docker engine](https://docs.docker.com/engine/install/) running locally. This step is **highly recommended**. It will help you debug issues.
4242

43-
# [CLI](#tab/CLI)
43+
# [Azure CLI](#tab/cli)
4444

4545
* Install and configure the Azure CLI and ML extension. For more information, see [Install, set up, and use the CLI (v2)](how-to-configure-cli.md).
4646

@@ -51,7 +51,7 @@ Custom container deployments can use web servers other than the default Python F
5151
az configure --defaults workspace=<azureml workspace name> group=<resource group>
5252
```
5353

54-
# [Python](#tab/python)
54+
# [Python SDK](#tab/python)
5555

5656
* If you haven't installed Python SDK v2, please install with this command:
5757

@@ -67,14 +67,14 @@ Custom container deployments can use web servers other than the default Python F
6767

6868
To follow along with this tutorial, download the source code below.
6969

70-
# [CLI](#tab/CLI)
70+
# [Azure CLI](#tab/cli)
7171

7272
```azurecli
7373
git clone https://github.com/Azure/azureml-examples --depth 1
7474
cd azureml-examples/cli
7575
```
7676

77-
# [Python](#tab/python)
77+
# [Python SDK](#tab/python)
7878

7979
```azurecli
8080
git clone https://github.com/Azure/azureml-examples --depth 1
@@ -120,7 +120,7 @@ Now that you've tested locally, stop the image:
120120
## Deploy your online endpoint to Azure
121121
Next, deploy your online endpoint to Azure.
122122

123-
# [CLI](#tab/CLI)
123+
# [Azure CLI](#tab/cli)
124124

125125
### Create a YAML file for your endpoint and deployment
126126

@@ -134,7 +134,7 @@ __tfserving-deployment.yml__
134134

135135
:::code language="yaml" source="~/azureml-examples-main/cli/endpoints/online/custom-container/tfserving-deployment.yml":::
136136

137-
# [Python](#tab/python)
137+
# [Python SDK](#tab/python)
138138

139139
### Connect to Azure Machine Learning workspace
140140
Connect to Azure Machine Learning Workspace, configure workspace details, and get a handle to the workspace as follows:
@@ -255,7 +255,7 @@ For example, if you have a directory structure of `/azureml-examples/cli/endpoin
255255

256256
:::image type="content" source="./media/how-to-deploy-custom-container/local-directory-structure.png" alt-text="Diagram showing a tree view of the local directory structure.":::
257257

258-
# [CLI](#tab/CLI)
258+
# [Azure CLI](#tab/cli)
259259

260260
and `tfserving-deployment.yml` contains:
261261

@@ -266,7 +266,7 @@ model:
266266
path: ./half_plus_two
267267
```
268268
269-
# [Python](#tab/python)
269+
# [Python SDK](#tab/python)
270270
271271
and `Model` class contains:
272272

@@ -285,7 +285,7 @@ You can optionally configure your `model_mount_path`. It enables you to change t
285285
> [!IMPORTANT]
286286
> The `model_mount_path` must be a valid absolute path in Linux (the OS of the container image).
287287

288-
# [CLI](#tab/CLI)
288+
# [Azure CLI](#tab/cli)
289289

290290
For example, you can have `model_mount_path` parameter in your _tfserving-deployment.yml_:
291291

@@ -300,7 +300,7 @@ model_mount_path: /var/tfserving-model-mount
300300
.....
301301
```
302302

303-
# [Python](#tab/python)
303+
# [Python SDK](#tab/python)
304304

305305
For example, you can have `model_mount_path` parameter in your `ManagedOnlineDeployment` class:
306306

@@ -323,7 +323,7 @@ then your model will be located at `/var/tfserving-model-mount/tfserving-deploym
323323

324324
### Create your endpoint and deployment
325325

326-
# [CLI](#tab/CLI)
326+
# [Azure CLI](#tab/cli)
327327

328328
Now that you've understood how the YAML was constructed, create your endpoint.
329329

@@ -339,7 +339,7 @@ az ml online-deployment create --name tfserving-deployment -f endpoints/online/c
339339

340340

341341

342-
# [Python](#tab/python)
342+
# [Python SDK](#tab/python)
343343

344344
Using the `MLClient` created earlier, we will now create the Endpoint in the workspace. This command will start the endpoint creation and return a confirmation response while the endpoint creation continues.
345345

@@ -359,11 +359,11 @@ ml_client.begin_create_or_update(blue_deployment)
359359

360360
Once your deployment completes, see if you can make a scoring request to the deployed endpoint.
361361

362-
# [CLI](#tab/CLI)
362+
# [Azure CLI](#tab/cli)
363363

364364
:::code language="azurecli" source="~/azureml-examples-main/cli/deploy-tfserving.sh" id="invoke_endpoint":::
365365

366-
# [Python](#tab/python)
366+
# [Python SDK](#tab/python)
367367

368368
Using the `MLClient` created earlier, we will get a handle to the endpoint. The endpoint can be invoked using the `invoke` command with the following parameters:
369369
- `endpoint_name` - Name of the endpoint
@@ -387,13 +387,13 @@ ml_client.online_endpoints.invoke(
387387

388388
Now that you've successfully scored with your endpoint, you can delete it:
389389

390-
# [CLI](#tab/CLI)
390+
# [Azure CLI](#tab/cli)
391391

392392
```azurecli
393393
az ml online-endpoint delete --name tfserving-endpoint
394394
```
395395

396-
# [Python](#tab/python)
396+
# [Python SDK](#tab/python)
397397

398398
```python
399399
ml_client.online_endpoints.begin_delete(name=online_endpoint_name)

articles/machine-learning/how-to-read-write-data-v2.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ Type | Input/Output | `upload` | `download` | `ro_mount` | `rw_mount` | `direct`
6565

6666
## Read data in a job
6767

68-
# [CLI](#tab/CLI)
68+
# [Azure CLI](#tab/cli)
6969

7070
Create a job specification YAML file (`<file-name>.yml`). Specify in the `inputs` section of the job:
7171

@@ -97,7 +97,7 @@ Next, run in the CLI
9797
az ml job create -f <file-name>.yml
9898
```
9999

100-
# [Python-SDK](#tab/Python-SDK)
100+
# [Python SDK](#tab/python)
101101

102102
The `Input` class allows you to define:
103103

@@ -148,7 +148,7 @@ This section outlines how you can read V1 `FileDataset` and `TabularDataset` dat
148148

149149
#### Read a `FileDataset`
150150

151-
# [CLI](#tab/CLI)
151+
# [Azure CLI](#tab/cli)
152152

153153
Create a job specification YAML file (`<file-name>.yml`), with the type set to `mltable` and the mode set to `eval_mount`:
154154

@@ -173,7 +173,7 @@ Next, run in the CLI
173173
az ml job create -f <file-name>.yml
174174
```
175175

176-
# [Python-SDK](#tab/Python-SDK)
176+
# [Python SDK](#tab/python)
177177

178178
In the `Input` object specify the `type` as `AssetTypes.MLTABLE` and `mode` as `InputOutputModes.EVAL_MOUNT`:
179179

@@ -215,7 +215,7 @@ returned_job.services["Studio"].endpoint
215215

216216
#### Read a `TabularDataset`
217217

218-
# [CLI](#tab/CLI)
218+
# [Azure CLI](#tab/cli)
219219

220220
Create a job specification YAML file (`<file-name>.yml`), with the type set to `mltable` and the mode set to `direct`:
221221

@@ -240,7 +240,7 @@ Next, run in the CLI
240240
az ml job create -f <file-name>.yml
241241
```
242242

243-
# [Python-SDK](#tab/Python-SDK)
243+
# [Python SDK](#tab/python)
244244

245245
In the `Input` object specify the `type` as `AssetTypes.MLTABLE` and `mode` as `InputOutputModes.DIRECT`:
246246

@@ -283,7 +283,7 @@ returned_job.services["Studio"].endpoint
283283

284284
In your job you can write data to your cloud-based storage using *outputs*. The [Supported modes](#supported-modes) section showed that only job *outputs* can write data because the mode can be either `rw_mount` or `upload`.
285285

286-
# [CLI](#tab/CLI)
286+
# [Azure CLI](#tab/cli)
287287

288288
Create a job specification YAML file (`<file-name>.yml`), with the `outputs` section populated with the type and path of where you would like to write your data to:
289289

@@ -318,7 +318,7 @@ Next create a job using the CLI:
318318
az ml job create --file <file-name>.yml
319319
```
320320

321-
# [Python-SDK](#tab/Python-SDK)
321+
# [Python SDK](#tab/python)
322322

323323
```python
324324
from azure.ai.ml import command

0 commit comments

Comments
 (0)