Skip to content

Commit da23e1d

Browse files
committed
Remove "_" from the PNG file names . . .
1 parent ffbf150 commit da23e1d

File tree

4 files changed

+4
-4
lines changed

4 files changed

+4
-4
lines changed

articles/machine-learning/how-to-access-data-interactive.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ df.head()
8686
> 1. Select **Data** from the left-hand menu, then select the **Datastores** tab.
8787
> 1. Select your datastore name, and then **Browse**.
8888
> 1. Find the file/folder you want to read into Pandas, and select the ellipsis (**...**) next to it. Select **Copy URI** from the menu. You can select the **Datastore URI** to copy into your notebook/script.
89-
> :::image type="content" source="media/how-to-access-data-interactive/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
89+
> :::image type="content" source="media/how-to-access-data-interactive/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
9090
9191
You can also instantiate an Azure Machine Learning filesystem, to handle filesystem-like commands - for example `ls`, `glob`, `exists`, `open`.
9292
- The `ls()` method lists files in a specific directory. You can use ls(), ls(.), ls (<<folder_level_1>/<folder_level_2>) to list files. We support both '.' and '..', in relative paths.
@@ -491,7 +491,7 @@ df.head()
491491
> 1. Select **Data** from the left-hand menu, then select the **Datastores** tab.
492492
> 1. Select your datastore name, and then **Browse**.
493493
> 1. Find the file/folder you want to read into Pandas, and select the ellipsis (**...**) next to it. Select **Copy URI** from the menu. You can select the **Datastore URI** to copy into your notebook/script.
494-
> :::image type="content" source="media/how-to-access-data-interactive/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
494+
> :::image type="content" source="media/how-to-access-data-interactive/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
495495

496496
##### [HTTP Server](#tab/http)
497497
```python
@@ -564,7 +564,7 @@ df.head()
564564
> 1. Select **Data** from the left-hand menu, then select the **Datastores** tab.
565565
> 1. Select your datastore name, and then **Browse**.
566566
> 1. Find the file/folder you want to read into Pandas, and select the ellipsis (**...**) next to it. Select **Copy URI** from the menu. You can select the **Datastore URI** to copy into your notebook/script.
567-
> :::image type="content" source="media/how-to-access-data-interactive/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
567+
> :::image type="content" source="media/how-to-access-data-interactive/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
568568

569569
##### [HTTP Server](#tab/http)
570570

articles/machine-learning/how-to-r-interactive-development.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -128,7 +128,7 @@ You can also use a Datastore URI to access different files on a registered Datas
128128
> 1. Select from the menu **Copy URI**.
129129
> 1. Select the **Datastore URI** to copy into your notebook/script.
130130
> Note that you must create a variable for `<path>` in the code.
131-
> :::image type="content" source="media/how-to-r-interactive-development/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
131+
> :::image type="content" source="media/how-to-r-interactive-development/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
132132

133133
2. Create a filestore object using the previously mentioned URI:
134134
```r

0 commit comments

Comments
 (0)