You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/machine-learning/how-to-access-data-interactive.md
+3-3Lines changed: 3 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -86,7 +86,7 @@ df.head()
86
86
> 1. Select **Data** from the left-hand menu, then select the **Datastores** tab.
87
87
> 1. Select your datastore name, and then **Browse**.
88
88
> 1. Find the file/folder you want to read into Pandas, and select the ellipsis (**...**) next to it. Select **Copy URI** from the menu. You can select the **Datastore URI** to copy into your notebook/script.
89
-
> :::image type="content" source="media/how-to-access-data-interactive/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
89
+
> :::image type="content" source="media/how-to-access-data-interactive/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
90
90
91
91
You can also instantiate an Azure Machine Learning filesystem, to handle filesystem-like commands - for example `ls`, `glob`, `exists`, `open`.
92
92
- The `ls()` method lists files in a specific directory. You can use ls(), ls(.), ls (<<folder_level_1>/<folder_level_2>) to list files. We support both '.' and '..', in relative paths.
@@ -491,7 +491,7 @@ df.head()
491
491
>1. Select **Data**from the left-hand menu, then select the **Datastores** tab.
492
492
>1. Select your datastore name, and then **Browse**.
493
493
>1. Find the file/folder you want to read into Pandas, and select the ellipsis (**...**) next to it. Select **Copy URI**from the menu. You can select the **Datastore URI** to copy into your notebook/script.
494
-
> :::image type="content"source="media/how-to-access-data-interactive/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
494
+
> :::image type="content"source="media/how-to-access-data-interactive/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
495
495
496
496
##### [HTTP Server](#tab/http)
497
497
```python
@@ -564,7 +564,7 @@ df.head()
564
564
>1. Select **Data**from the left-hand menu, then select the **Datastores** tab.
565
565
>1. Select your datastore name, and then **Browse**.
566
566
>1. Find the file/folder you want to read into Pandas, and select the ellipsis (**...**) next to it. Select **Copy URI**from the menu. You can select the **Datastore URI** to copy into your notebook/script.
567
-
> :::image type="content"source="media/how-to-access-data-interactive/datastore_uri_copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
567
+
> :::image type="content"source="media/how-to-access-data-interactive/datastore-uri-copy.png" alt-text="Screenshot highlighting the copy of the datastore URI.":::
>:::imagetype="content"source="media/how-to-r-interactive-development/datastore_uri_copy.png"alt-text="Screenshot highlighting the copy of the datastore URI.":::
131
+
>:::imagetype="content"source="media/how-to-r-interactive-development/datastore-uri-copy.png"alt-text="Screenshot highlighting the copy of the datastore URI.":::
0 commit comments