Skip to content

Commit dc16c27

Browse files
authored
Merge pull request #227329 from fbsolo-ms1/updates-for-YP
Change the ms.reviewer metadata & "clean" the text
2 parents b7ac567 + 77895a2 commit dc16c27

6 files changed

+59
-63
lines changed

articles/machine-learning/migrate-to-v2-resource-compute.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,8 @@ ms.subservice: mldata
88
ms.topic: reference
99
author: vijetajo
1010
ms.author: vijetaj
11-
ms.date: 09/28/2022
12-
ms.reviewer: sgilley
11+
ms.date: 02/14/2023
12+
ms.reviewer: franksolomon
1313
ms.custom: migration
1414
---
1515

@@ -32,7 +32,7 @@ This article gives a comparison of scenario(s) in SDK v1 and SDK v2.
3232
from azureml.core.compute_target import ComputeTargetException
3333

3434
# Compute Instances need to have a unique name across the region.
35-
# Here we create a unique name with current datetime
35+
# Here, we create a unique name with current datetime
3636
ci_basic_name = "basic-ci" + datetime.datetime.now().strftime("%Y%m%d%H%M")
3737

3838
compute_config = ComputeInstance.provisioning_configuration(
@@ -46,7 +46,7 @@ This article gives a comparison of scenario(s) in SDK v1 and SDK v2.
4646

4747
```python
4848
# Compute Instances need to have a unique name across the region.
49-
# Here we create a unique name with current datetime
49+
# Here, we create a unique name with current datetime
5050
from azure.ai.ml.entities import ComputeInstance, AmlCompute
5151
import datetime
5252

articles/machine-learning/quickstart-spark-jobs.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ ms.reviewer: franksolomon
88
ms.service: machine-learning
99
ms.subservice: mldata
1010
ms.topic: quickstart
11-
ms.date: 02/10/2023
11+
ms.date: 02/14/2023
1212
#Customer intent: As a Full Stack ML Pro, I want to submit a Spark job in Azure Machine Learning.
1313
---
1414

articles/machine-learning/reference-yaml-data.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ ms.custom: cliv2, event-tier1-build-2022
1010

1111
author: ynpandey
1212
ms.author: yogipandey
13-
ms.date: 03/31/2022
13+
ms.date: 02/14/2023
1414
ms.reviewer: franksolomon
1515
---
1616

@@ -28,21 +28,21 @@ The source JSON schema can be found at https://azuremlschemas.azureedge.net/late
2828

2929
| Key | Type | Description | Allowed values | Default value |
3030
| --- | ---- | ----------- | -------------- | ------------- |
31-
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. | | |
32-
| `name` | string | **Required.** Name of the data asset. | | |
33-
| `version` | string | Version of the dataset. If omitted, Azure ML will autogenerate a version. | | |
34-
| `description` | string | Description of the data asset. | | |
35-
| `tags` | object | Dictionary of tags for the data asset. | | |
31+
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. | | |
32+
| `name` | string | **Required.** The data asset name. | | |
33+
| `version` | string | The dataset version. If omitted, Azure ML autogenerates a version. | | |
34+
| `description` | string | The data asset description. | | |
35+
| `tags` | object | The datastore tag dictionary. | | |
3636
| `type` | string | The data asset type. Specify `uri_file` for data that points to a single file source, or `uri_folder` for data that points to a folder source. | `uri_file`, `uri_folder` | `uri_folder` |
37-
| `path` | string | Either a local path to the data source file or folder, or the URI of a cloud path to the data source file or folder. Please ensure that the source provided here is compatible with the `type` specified. <br><br> Supported URI types are `azureml`, `https`, `wasbs`, `abfss`, and `adl`. See [Core yaml syntax](reference-yaml-core-syntax.md) for more information on how to use the `azureml://` URI format. | | |
37+
| `path` | string | Either a local path to the data source file or folder, or the URI of a cloud path to the data source file or folder. Ensure that the source provided here is compatible with the `type` specified. <br><br> Supported URI types are `azureml`, `https`, `wasbs`, `abfss`, and `adl`. To use the `azureml://` URI format, see [Core yaml syntax](reference-yaml-core-syntax.md). | | |
3838

3939
## Remarks
4040

4141
The `az ml data` commands can be used for managing Azure Machine Learning data assets.
4242

4343
## Examples
4444

45-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/assets/data). Several are shown below.
45+
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/assets/data). Several are shown:
4646

4747
## YAML: datastore file
4848

articles/machine-learning/reference-yaml-datastore-blob.md

Lines changed: 15 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -10,44 +10,42 @@ ms.custom: cliv2, event-tier1-build-2022
1010

1111
author: ynpandey
1212
ms.author: yogipandey
13-
ms.date: 10/21/2021
13+
ms.date: 02/14/2023
1414
ms.reviewer: franksolomon
1515
---
1616

1717
# CLI (v2) Azure Blob datastore YAML schema
1818

1919
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
2020

21-
The source JSON schema can be found at https://azuremlschemas.azureedge.net/latest/azureBlob.schema.json.
22-
23-
21+
See the source JSON schema at https://azuremlschemas.azureedge.net/latest/azureBlob.schema.json.
2422

2523
[!INCLUDE [schema note](../../includes/machine-learning-preview-old-json-schema-note.md)]
2624

2725
## YAML syntax
2826

2927
| Key | Type | Description | Allowed values | Default value |
3028
| --- | ---- | ----------- | -------------- | ------- |
31-
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. | | |
32-
| `type` | string | **Required.** The type of datastore. | `azure_blob` | |
33-
| `name` | string | **Required.** Name of the datastore. | | |
34-
| `description` | string | Description of the datastore. | | |
35-
| `tags` | object | Dictionary of tags for the datastore. | | |
36-
| `account_name` | string | **Required.** Name of the Azure storage account. | | |
37-
| `container_name` | string | **Required.** Name of the container. | | |
38-
| `endpoint` | string | Endpoint suffix of the storage service, which is used for creating the storage account endpoint URL by combining the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.blob.core.windows.net`. | | `core.windows.net` |
39-
| `protocol` | string | Protocol to use to connect to the container. | `https`, `wasbs` | `https` |
40-
| `credentials` | object | Credential-based authentication credentials for connecting to the Azure storage account. You can provide either an account key or a shared access signature (SAS) token. Credential secrets are stored in the workspace key vault. | | |
41-
| `credentials.account_key` | string | The account key for accessing the storage account. **One of `credentials.account_key` or `credentials.sas_token` is required if `credentials` is specified.** | | |
29+
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. | | |
30+
| `type` | string | **Required.** The datastore type. | `azure_blob` | |
31+
| `name` | string | **Required.** The datastore name. | | |
32+
| `description` | string | The datastore description. | | |
33+
| `tags` | object | The datastore tag dictionary. | | |
34+
| `account_name` | string | **Required.** The Azure storage account name. | | |
35+
| `container_name` | string | **Required.** The container name. | | |
36+
| `endpoint` | string | The endpoint suffix of the storage service, used for creation of the storage account endpoint URL. It combines the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.blob.core.windows.net`. | | `core.windows.net` |
37+
| `protocol` | string | Protocol for connection to the container. | `https`, `wasbs` | `https` |
38+
| `credentials` | object | Credential-based authentication credentials for connection to the Azure storage account. An account key or a shared access signature (SAS) token will work. The workspace key vault stores the credential secrets. | | |
39+
| `credentials.account_key` | string | The account key used for storage account access. **One of `credentials.account_key` or `credentials.sas_token` is required if `credentials` is specified.** | | |
4240
| `credentials.sas_token` | string | The SAS token for accessing the storage account. **One of `credentials.account_key` or `credentials.sas_token` is required if `credentials` is specified.** | | |
4341

4442
## Remarks
4543

46-
The `az ml datastore` command can be used for managing Azure Machine Learning datastores.
44+
You can use the `az ml datastore` command to manage Azure Machine Learning datastores.
4745

4846
## Examples
4947

50-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown below.
48+
See examples in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown here:
5149

5250
## YAML: identity-based access
5351

articles/machine-learning/reference-yaml-datastore-data-lake-gen1.md

Lines changed: 16 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -10,44 +10,42 @@ ms.custom: cliv2, event-tier1-build-2022
1010

1111
author: ynpandey
1212
ms.author: yogipandey
13-
ms.date: 10/21/2021
13+
ms.date: 02/14/2023
1414
ms.reviewer: franksolomon
1515
---
1616

1717
# CLI (v2) Azure Data Lake Gen1 YAML schema
1818

1919
[!INCLUDE [cli v2](../../includes/machine-learning-cli-v2.md)]
2020

21-
The source JSON schema can be found at https://azuremlschemas.azureedge.net/latest/azureDataLakeGen1.schema.json.
22-
23-
21+
See the source JSON schema at https://azuremlschemas.azureedge.net/latest/azureDataLakeGen1.schema.json.
2422

2523
[!INCLUDE [schema note](../../includes/machine-learning-preview-old-json-schema-note.md)]
2624

2725
## YAML syntax
2826

2927
| Key | Type | Description | Allowed values | Default value |
3028
| --- | ---- | ----------- | -------------- | ------- |
31-
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. | | |
32-
| `type` | string | **Required.** The type of datastore. | `azure_data_lake_gen1` | |
33-
| `name` | string | **Required.** Name of the datastore. | | |
34-
| `description` | string | Description of the datastore. | | |
35-
| `tags` | object | Dictionary of tags for the datastore. | | |
36-
| `store_name` | string | **Required.** Name of the Azure Data Lake Storage Gen1 account. | | |
37-
| `credentials` | object | Service principal credentials for connecting to the Azure storage account. Credential secrets are stored in the workspace key vault. | | |
38-
| `credentials.tenant_id` | string | The tenant ID of the service principal. **Required if `credentials` is specified.** | | |
39-
| `credentials.client_id` | string | The client ID of the service principal. **Required if `credentials` is specified.** | | |
40-
| `credentials.client_secret` | string | The client secret of the service principal. **Required if `credentials` is specified.** | | |
41-
| `credentials.resource_url` | string | The resource URL that determines what operations will be performed on the Azure Data Lake Storage Gen1 account. | | `https://datalake.azure.net/` |
42-
| `credentials.authority_url` | string | The authority URL used to authenticate the user. | | `https://login.microsoftonline.com` |
29+
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. | | |
30+
| `type` | string | **Required.** The datastore type. | `azure_data_lake_gen1` | |
31+
| `name` | string | **Required.** The datastore name. | | |
32+
| `description` | string | The datastore description. | | |
33+
| `tags` | object | The datastore tag dictionary. | | |
34+
| `store_name` | string | **Required.** The Azure Data Lake Storage Gen1 account name. | | |
35+
| `credentials` | object | Service principal credentials to connect to the Azure storage account. Credential secrets are stored in the workspace key vault. | | |
36+
| `credentials.tenant_id` | string | The service principal tenant ID. **Required if `credentials` is specified.** | | |
37+
| `credentials.client_id` | string | The service principal client ID. **Required if `credentials` is specified.** | | |
38+
| `credentials.client_secret` | string | The service principal client secret. **Required if `credentials` is specified.** | | |
39+
| `credentials.resource_url` | string | The resource URL that determines which operations the Azure Data Lake Storage Gen1 account performs. | | `https://datalake.azure.net/` |
40+
| `credentials.authority_url` | string | The authority URL used for user authentication. | | `https://login.microsoftonline.com` |
4341

4442
## Remarks
4543

46-
The `az ml datastore` command can be used for managing Azure Machine Learning datastores.
44+
You can use the `az ml datastore` command to manage Azure Machine Learning datastores.
4745

4846
## Examples
4947

50-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown below.
48+
See examples in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown here:
5149

5250
## YAML: identity-based access
5351

articles/machine-learning/reference-yaml-datastore-data-lake-gen2.md

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -28,29 +28,29 @@ The source JSON schema can be found at https://azuremlschemas.azureedge.net/late
2828

2929
| Key | Type | Description | Allowed values | Default value |
3030
| --- | ---- | ----------- | -------------- | ------- |
31-
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. | | |
32-
| `type` | string | **Required.** The type of datastore. | `azure_data_lake_gen2` | |
33-
| `name` | string | **Required.** Name of the datastore. | | |
34-
| `description` | string | Description of the datastore. | | |
35-
| `tags` | object | Dictionary of tags for the datastore. | | |
36-
| `account_name` | string | **Required.** Name of the Azure storage account. | | |
37-
| `filesystem` | string | **Required.** Name of the file system. The parent directory that contains the files and folders. This is equivalent to a container in Azure Blob storage. | | |
38-
| `endpoint` | string | Endpoint suffix of the storage service, which is used for creating the storage account endpoint URL by combining the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.dfs.core.windows.net`. | | `core.windows.net` |
39-
| `protocol` | string | Protocol to use to connect to the file system. | `https`, `abfss` | `https` |
31+
| `$schema` | string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. | | |
32+
| `type` | string | **Required.** The datastore type. | `azure_data_lake_gen2` | |
33+
| `name` | string | **Required.** The datastore name. | | |
34+
| `description` | string | The datastore description. | | |
35+
| `tags` | object | The datastore tag dictionary. | | |
36+
| `account_name` | string | **Required.** The Azure storage account name. | | |
37+
| `filesystem` | string | **Required.** The file system name. The parent directory containing the files and folders, equivalent to an Azure Blog storage container. | | |
38+
| `endpoint` | string | The endpoint suffix of the storage service, used for creation of the storage account endpoint URL. It combines the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.dfs.core.windows.net`. | | `core.windows.net` |
39+
| `protocol` | string | Protocol for connection to the file system. | `https`, `abfss` | `https` |
4040
| `credentials` | object | Service principal credentials for connecting to the Azure storage account. Credential secrets are stored in the workspace key vault. | | |
41-
| `credentials.tenant_id` | string | The tenant ID of the service principal. **Required if `credentials` is specified.** | | |
42-
| `credentials.client_id` | string | The client ID of the service principal. **Required if `credentials` is specified.** | | |
43-
| `credentials.client_secret` | string | The client secret of the service principal. **Required if `credentials` is specified.** | | |
44-
| `credentials.resource_url` | string | The resource URL that determines what operations will be performed on the Azure Data Lake Storage Gen2 account. | | `https://storage.azure.com/` |
45-
| `credentials.authority_url` | string | The authority URL used to authenticate the user. | | `https://login.microsoftonline.com` |
41+
| `credentials.tenant_id` | string | The service principal tenant ID. **Required if `credentials` is specified.** | | |
42+
| `credentials.client_id` | string | The service principal client ID. **Required if `credentials` is specified.** | | |
43+
| `credentials.client_secret` | string | The service principal client secret. **Required if `credentials` is specified.** | | |
44+
| `credentials.resource_url` | string | The resource URL that specifies the operations that will be performed on the Azure Data Lake Storage Gen2 account. | | `https://storage.azure.com/` |
45+
| `credentials.authority_url` | string | The authority URL used for user authentication. | | `https://login.microsoftonline.com` |
4646

4747
## Remarks
4848

4949
The `az ml datastore` command can be used for managing Azure Machine Learning datastores.
5050

5151
## Examples
5252

53-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown below.
53+
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown here:
5454

5555
## YAML: identity-based access
5656

0 commit comments

Comments
 (0)