You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. |||
32
-
|`name`| string |**Required.**Name of the data asset. |||
33
-
|`version`| string |Version of the dataset. If omitted, Azure ML will autogenerate a version. |||
34
-
|`description`| string |Description of the data asset. |||
35
-
|`tags`| object |Dictionary of tags for the data asset. |||
31
+
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. |||
32
+
|`name`| string |**Required.**The data asset name. |||
33
+
|`version`| string |The dataset version. If omitted, Azure ML autogenerates a version. |||
34
+
|`description`| string |The data asset description. |||
35
+
|`tags`| object |The datastore tag dictionary. |||
36
36
|`type`| string | The data asset type. Specify `uri_file` for data that points to a single file source, or `uri_folder` for data that points to a folder source. |`uri_file`, `uri_folder`|`uri_folder`|
37
-
|`path`| string | Either a local path to the data source file or folder, or the URI of a cloud path to the data source file or folder. Please ensure that the source provided here is compatible with the `type` specified. <br><br> Supported URI types are `azureml`, `https`, `wasbs`, `abfss`, and `adl`. See [Core yaml syntax](reference-yaml-core-syntax.md) for more information on how to use the `azureml://` URI format. |||
37
+
|`path`| string | Either a local path to the data source file or folder, or the URI of a cloud path to the data source file or folder. Ensure that the source provided here is compatible with the `type` specified. <br><br> Supported URI types are `azureml`, `https`, `wasbs`, `abfss`, and `adl`. To use the `azureml://` URI format, see [Core yaml syntax](reference-yaml-core-syntax.md). |||
38
38
39
39
## Remarks
40
40
41
41
The `az ml data` commands can be used for managing Azure Machine Learning data assets.
42
42
43
43
## Examples
44
44
45
-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/assets/data). Several are shown below.
45
+
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/assets/data). Several are shown:
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. |||
32
-
|`type`| string |**Required.** The type of datastore. |`azure_blob`||
33
-
|`name`| string |**Required.**Name of the datastore. |||
34
-
|`description`| string |Description of the datastore. |||
35
-
|`tags`| object |Dictionary of tags for the datastore. |||
36
-
|`account_name`| string |**Required.**Name of the Azure storage account. |||
37
-
|`container_name`| string |**Required.**Name of the container. |||
38
-
|`endpoint`| string |Endpoint suffix of the storage service, which is used for creating the storage account endpoint URL by combining the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.blob.core.windows.net`. ||`core.windows.net`|
39
-
|`protocol`| string | Protocol to use to connect to the container. |`https`, `wasbs`|`https`|
40
-
|`credentials`| object | Credential-based authentication credentials for connecting to the Azure storage account. You can provide either an account key or a shared access signature (SAS) token. Credential secrets are stored in the workspace key vault. |||
41
-
|`credentials.account_key`| string | The account key for accessing the storage account. **One of `credentials.account_key` or `credentials.sas_token` is required if `credentials` is specified.**|||
29
+
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. |||
30
+
|`type`| string |**Required.** The datastore type. |`azure_blob`||
|`endpoint`| string |The endpoint suffix of the storage service, used for creation of the storage account endpoint URL. It combines the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.blob.core.windows.net`. ||`core.windows.net`|
37
+
|`protocol`| string | Protocol for connection to the container. |`https`, `wasbs`|`https`|
38
+
|`credentials`| object | Credential-based authentication credentials for connection to the Azure storage account. An account key or a shared access signature (SAS) token will work. The workspace key vault stores the credential secrets. |||
39
+
|`credentials.account_key`| string | The account key used for storage account access. **One of `credentials.account_key` or `credentials.sas_token` is required if `credentials` is specified.**|||
42
40
|`credentials.sas_token`| string | The SAS token for accessing the storage account. **One of `credentials.account_key` or `credentials.sas_token` is required if `credentials` is specified.**|||
43
41
44
42
## Remarks
45
43
46
-
The `az ml datastore` command can be used for managing Azure Machine Learning datastores.
44
+
You can use the `az ml datastore` command to manage Azure Machine Learning datastores.
47
45
48
46
## Examples
49
47
50
-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown below.
48
+
See examples in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown here:
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. |||
32
-
|`type`| string |**Required.** The type of datastore. |`azure_data_lake_gen1`||
33
-
|`name`| string |**Required.**Name of the datastore. |||
34
-
|`description`| string |Description of the datastore. |||
35
-
|`tags`| object |Dictionary of tags for the datastore. |||
36
-
|`store_name`| string |**Required.**Name of the Azure Data Lake Storage Gen1 account. |||
37
-
|`credentials`| object | Service principal credentials for connecting to the Azure storage account. Credential secrets are stored in the workspace key vault. |||
38
-
|`credentials.tenant_id`| string | The tenant ID of the service principal. **Required if `credentials` is specified.**|||
39
-
|`credentials.client_id`| string | The client ID of the service principal. **Required if `credentials` is specified.**|||
40
-
|`credentials.client_secret`| string | The client secret of the service principal. **Required if `credentials` is specified.**|||
41
-
|`credentials.resource_url`| string | The resource URL that determines what operations will be performed on the Azure Data Lake Storage Gen1 account. ||`https://datalake.azure.net/`|
42
-
|`credentials.authority_url`| string | The authority URL used to authenticate the user. ||`https://login.microsoftonline.com`|
29
+
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. |||
30
+
|`type`| string |**Required.** The datastore type. |`azure_data_lake_gen1`||
|`tags`| object |The datastore tag dictionary. |||
34
+
|`store_name`| string |**Required.**The Azure Data Lake Storage Gen1 account name. |||
35
+
|`credentials`| object | Service principal credentials to connect to the Azure storage account. Credential secrets are stored in the workspace key vault. |||
36
+
|`credentials.tenant_id`| string | The service principal tenant ID. **Required if `credentials` is specified.**|||
37
+
|`credentials.client_id`| string | The service principal client ID. **Required if `credentials` is specified.**|||
38
+
|`credentials.client_secret`| string | The service principal client secret. **Required if `credentials` is specified.**|||
39
+
|`credentials.resource_url`| string | The resource URL that determines which operations the Azure Data Lake Storage Gen1 account performs. ||`https://datalake.azure.net/`|
40
+
|`credentials.authority_url`| string | The authority URL used for user authentication. ||`https://login.microsoftonline.com`|
43
41
44
42
## Remarks
45
43
46
-
The `az ml datastore` command can be used for managing Azure Machine Learning datastores.
44
+
You can use the `az ml datastore` command to manage Azure Machine Learning datastores.
47
45
48
46
## Examples
49
47
50
-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown below.
48
+
See examples in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown here:
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning VS Code extension to author the YAML file, including `$schema` at the top of your file enables you to invoke schema and resource completions. |||
32
-
|`type`| string |**Required.** The type of datastore. |`azure_data_lake_gen2`||
33
-
|`name`| string |**Required.**Name of the datastore. |||
34
-
|`description`| string |Description of the datastore. |||
35
-
|`tags`| object |Dictionary of tags for the datastore. |||
36
-
|`account_name`| string |**Required.**Name of the Azure storage account. |||
37
-
|`filesystem`| string |**Required.**Name of the file system. The parent directory that contains the files and folders. This is equivalent to a container in Azure Blob storage. |||
38
-
|`endpoint`| string |Endpoint suffix of the storage service, which is used for creating the storage account endpoint URL by combining the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.dfs.core.windows.net`. ||`core.windows.net`|
39
-
|`protocol`| string | Protocol to use to connect to the file system. |`https`, `abfss`|`https`|
31
+
|`$schema`| string | The YAML schema. If you use the Azure Machine Learning Visual Studio Code extension to author the YAML file, you can invoke schema and resource completions if you include `$schema` at the top of your file. |||
|`filesystem`| string |**Required.**The file system name. The parent directory containing the files and folders, equivalent to an Azure Blog storage container. |||
38
+
|`endpoint`| string |The endpoint suffix of the storage service, used for creation of the storage account endpoint URL. It combines the storage account name and `endpoint`. Example storage account URL: `https://<storage-account-name>.dfs.core.windows.net`. ||`core.windows.net`|
39
+
|`protocol`| string | Protocol for connection to the file system. |`https`, `abfss`|`https`|
40
40
|`credentials`| object | Service principal credentials for connecting to the Azure storage account. Credential secrets are stored in the workspace key vault. |||
41
-
|`credentials.tenant_id`| string | The tenant ID of the service principal. **Required if `credentials` is specified.**|||
42
-
|`credentials.client_id`| string | The client ID of the service principal. **Required if `credentials` is specified.**|||
43
-
|`credentials.client_secret`| string | The client secret of the service principal. **Required if `credentials` is specified.**|||
44
-
|`credentials.resource_url`| string | The resource URL that determines what operations will be performed on the Azure Data Lake Storage Gen2 account. ||`https://storage.azure.com/`|
45
-
|`credentials.authority_url`| string | The authority URL used to authenticate the user. ||`https://login.microsoftonline.com`|
41
+
|`credentials.tenant_id`| string | The service principal tenant ID. **Required if `credentials` is specified.**|||
42
+
|`credentials.client_id`| string | The service principal client ID. **Required if `credentials` is specified.**|||
43
+
|`credentials.client_secret`| string | The service principal client secret. **Required if `credentials` is specified.**|||
44
+
|`credentials.resource_url`| string | The resource URL that specifies the operations that will be performed on the Azure Data Lake Storage Gen2 account. ||`https://storage.azure.com/`|
45
+
|`credentials.authority_url`| string | The authority URL used for user authentication. ||`https://login.microsoftonline.com`|
46
46
47
47
## Remarks
48
48
49
49
The `az ml datastore` command can be used for managing Azure Machine Learning datastores.
50
50
51
51
## Examples
52
52
53
-
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown below.
53
+
Examples are available in the [examples GitHub repository](https://github.com/Azure/azureml-examples/tree/main/cli/resources/datastore). Several are shown here:
0 commit comments