Skip to content

Commit de71204

Browse files
Fixing spelling issues
1 parent 4348c2a commit de71204

File tree

2 files changed

+5
-5
lines changed

2 files changed

+5
-5
lines changed

articles/machine-learning/how-to-deploy-azure-kubernetes-service.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.topic: conceptual
99
ms.author: jordane
1010
author: jpe316
1111
ms.reviewer: larryfr
12-
ms.date: 12/27/2019
12+
ms.date: 01/16/2020
1313
---
1414

1515
# Deploy a model to an Azure Kubernetes Service cluster
@@ -104,7 +104,7 @@ For more information on the classes, methods, and parameters used in this exampl
104104
az ml computetarget create aks -n myaks
105105
```
106106

107-
For more information, see the [az ml computetarget create ask](https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/create?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-create-aks) reference.
107+
For more information, see the [`az ml computetarget create aks`](https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/create?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-create-aks) reference.
108108

109109
## Attach an existing AKS cluster
110110

@@ -178,7 +178,7 @@ To attach the existing cluster to your workspace, use the following command. Rep
178178
az ml computetarget attach aks -n myaks -i aksresourceid -g myresourcegroup -w myworkspace
179179
```
180180

181-
For more information, see the [az ml computetarget attach aks](https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/attach?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-attach-aks) reference.
181+
For more information, see the [`az ml computetarget attach aks`](https://docs.microsoft.com/cli/azure/ext/azure-cli-ml/ml/computetarget/attach?view=azure-cli-latest#ext-azure-cli-ml-az-ml-computetarget-attach-aks) reference.
182182

183183
## Deploy to AKS
184184

articles/machine-learning/how-to-set-up-training-targets.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ ms.reviewer: sgilley
99
ms.service: machine-learning
1010
ms.subservice: core
1111
ms.topic: conceptual
12-
ms.date: 12/27/2019
12+
ms.date: 01/16/2020
1313
ms.custom: seodec18
1414
---
1515
# Set up and use compute targets for model training
@@ -48,7 +48,7 @@ Learn more about [submitting experiments](#submit) at the end of this article.
4848

4949
## What's an estimator?
5050

51-
To facilitate model training using popular frameworks, the Azure Machine Learning Python SDK provides an alternative higher-level abstraction, the estimator class. This class allows you to easily construct run configurations. You can create and use a generic [Estimator](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator?view=azure-ml-py) to submit training scripts that use any learning framework you choose (such as scikit-learn). We recommend using an estimator for training as it automatically contructs embedded objects like an environment or RunConfiguration objects for you. If you wish to have more control over how these objects are created and specfify what packages to install for your experiement run, follow [these steps](#amlcompute) to submit your training experiments using a RunConfiguration object on an Azure Machine Learning Compute.
51+
To facilitate model training using popular frameworks, the Azure Machine Learning Python SDK provides an alternative higher-level abstraction, the estimator class. This class allows you to easily construct run configurations. You can create and use a generic [Estimator](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.estimator?view=azure-ml-py) to submit training scripts that use any learning framework you choose (such as scikit-learn). We recommend using an estimator for training as it automatically constructs embedded objects like an environment or RunConfiguration objects for you. If you wish to have more control over how these objects are created and specify what packages to install for your experiment run, follow [these steps](#amlcompute) to submit your training experiments using a RunConfiguration object on an Azure Machine Learning Compute.
5252

5353
For PyTorch, TensorFlow, and Chainer tasks, Azure Machine Learning also provides respective [PyTorch](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.pytorch?view=azure-ml-py), [TensorFlow](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.tensorflow?view=azure-ml-py), and [Chainer](https://docs.microsoft.com/python/api/azureml-train-core/azureml.train.dnn.chainer?view=azure-ml-py) estimators to simplify using these frameworks.
5454

0 commit comments

Comments
 (0)