Skip to content

Commit df49f64

Browse files
author
Marc Gelormino
committed
Fix typos.
1 parent 3159d32 commit df49f64

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

articles/machine-learning/how-to-auto-train-forecast.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -124,7 +124,7 @@ The [`AutoMLConfig`](https://docs.microsoft.com/python/api/azureml-train-automl-
124124

125125
See the [reference documentation](/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig.automlconfig) for more information.
126126

127-
Create the time-series settings as a dictionary object. Set the `time_column_name` to the `day_datetime` field in the data set. Define the `grain_column_names` parameter to ensure that **two separate time-series groups** are created for the data; one for store A and B. Lastly, set the `max_horizon` to 50 in order to predict for the entire test set. Set a forecast window to 10 periods with `target_rolling_window_size`, and specify a single lag on the target values for two periods ahead with the `target_lags` parameter. It is recommended to set `max_horizon`, `target_rolling_window_size` and `target_lags` to "auto" which will automatically detect these values for you. In the example below, "auto" settings have been used for these paramaters.
127+
Create the time-series settings as a dictionary object. Set the `time_column_name` to the `day_datetime` field in the data set. Define the `grain_column_names` parameter to ensure that **two separate time-series groups** are created for the data; one for store A and B. Lastly, set the `max_horizon` to 50 in order to predict for the entire test set. Set a forecast window to 10 periods with `target_rolling_window_size`, and specify a single lag on the target values for two periods ahead with the `target_lags` parameter. It is recommended to set `max_horizon`, `target_rolling_window_size` and `target_lags` to "auto" which will automatically detect these values for you. In the example below, "auto" settings have been used for these parameters.
128128

129129
```python
130130
time_series_settings = {
@@ -231,7 +231,7 @@ Calculate RMSE (root mean squared error) between the `actual_labels` actual valu
231231
from sklearn.metrics import mean_squared_error
232232
from math import sqrt
233233

234-
rmse = sqrt(mean_squared_error(actual_lables, predict_labels))
234+
rmse = sqrt(mean_squared_error(actual_labels, predict_labels))
235235
rmse
236236
```
237237

articles/machine-learning/how-to-secure-web-service.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ To deploy (or redeploy) the service with SSL enabled, set the *ssl_enabled* para
7878
7979
When you deploy to AKS, you can create a new AKS cluster or attach an existing one. For more information on creating or attaching a cluster, see [Deploy a model to an Azure Kubernetes Service cluster](how-to-deploy-azure-kubernetes-service.md).
8080

81-
- If you create a new cluster, you use **[AksCompute.provisionining_configuration()](/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#provisioning-configuration-agent-count-none--vm-size-none--ssl-cname-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--location-none--vnet-resourcegroup-name-none--vnet-name-none--subnet-name-none--service-cidr-none--dns-service-ip-none--docker-bridge-cidr-none--cluster-purpose-none--load-balancer-type-none--load-balancer-subnet-none-)**.
81+
- If you create a new cluster, you use **[AksCompute.provisioning_configuration()](/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#provisioning-configuration-agent-count-none--vm-size-none--ssl-cname-none--ssl-cert-pem-file-none--ssl-key-pem-file-none--location-none--vnet-resourcegroup-name-none--vnet-name-none--subnet-name-none--service-cidr-none--dns-service-ip-none--docker-bridge-cidr-none--cluster-purpose-none--load-balancer-type-none--load-balancer-subnet-none-)**.
8282
- If you attach an existing cluster, you use **[AksCompute.attach_configuration()](/python/api/azureml-core/azureml.core.compute.akscompute?view=azure-ml-py#attach-configuration-resource-group-none--cluster-name-none--resource-id-none--cluster-purpose-none-)**. Both return a configuration object that has an **enable_ssl** method.
8383

8484
The **enable_ssl** method can use a certificate that's provided by Microsoft or a certificate that you purchase.
@@ -164,7 +164,7 @@ Next, you must update your DNS to point to the web service.
164164

165165
SSL certificates expire and must be renewed. Typically this happens every year. Use the information in the following sections to update and renew your certificate for models deployed to Azure Kubernetes Service:
166166

167-
### Update a Microsoft generated certificate
167+
### Update a Microsoft-generated certificate
168168

169169
If the certificate was originally generated by Microsoft (when using the *leaf_domain_label* to create the service), use one of the following examples to update the certificate:
170170

0 commit comments

Comments
 (0)