Skip to content

Commit df9eed1

Browse files
authored
Update how-to-use-serverless-compute.md
1 parent 8536b9f commit df9eed1

File tree

1 file changed

+3
-3
lines changed

1 file changed

+3
-3
lines changed

articles/machine-learning/how-to-use-serverless-compute.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -43,8 +43,8 @@ Serverless compute can be used to fine-tune models in the model catalog such as
4343
## How to use serverless compute
4444

4545
* You can finetune foundation models such as LLAMA 2 using notebooks as shown below:
46-
* [Fine Tune LLAMA 2](https://github.com/Azure/azureml-examples/blob/bd799ecf31b60cec650e3b0ea2ea790fe0c99c4e/sdk/python/foundation-models/system/finetune/Llama-notebooks/text-classification/emotion-detection-llama-serverless-compute.ipynb)
47-
* [Fine Tune LLAMA 2 using multiple nodes](https://github.com/Azure/azureml-examples/blob/84ddcf23566038dfbb270da81c5b34b6e0fb3e5d/sdk/python/foundation-models/system/finetune/Llama-notebooks/multinode-text-classification/emotion-detection-llama-multinode-serverless.ipynb)
46+
* [Fine Tune LLAMA 2](https://github.com/Azure/azureml-examples/blob/main/sdk/python/foundation-models/system/finetune/Llama-notebooks/text-classification/emotion-detection-llama-serverless-compute.ipynb)
47+
* [Fine Tune LLAMA 2 using multiple nodes](https://github.com/Azure/azureml-examples/blob/main/sdk/python/foundation-models/system/finetune/Llama-notebooks/multinode-text-classification/emotion-detection-llama-multinode-serverless.ipynb)
4848
* When you create your own compute cluster, you use its name in the command job, such as `compute="cpu-cluster"`. With serverless, you can skip creation of a compute cluster, and omit the `compute` parameter to instead use serverless compute. When `compute` isn't specified for a job, the job runs on serverless compute. Omit the compute name in your CLI or SDK jobs to use serverless compute in the following job types and optionally provide resources a job would need in terms of instance count and instance type:
4949

5050
* Command jobs, including interactive jobs and distributed training
@@ -388,4 +388,4 @@ You can also set serverless compute as the default compute in Designer.
388388
View more examples of training with serverless compute at:-
389389
* [Quick Start](https://github.com/Azure/azureml-examples/blob/main/tutorials/get-started-notebooks/quickstart.ipynb)
390390
* [Train Model](https://github.com/Azure/azureml-examples/blob/main/tutorials/get-started-notebooks/train-model.ipynb)
391-
* [Fine Tune LLAMA 2](https://github.com/Azure/azureml-examples/blob/bd799ecf31b60cec650e3b0ea2ea790fe0c99c4e/sdk/python/foundation-models/system/finetune/Llama-notebooks/text-classification/emotion-detection-llama-serverless-compute.ipynb)
391+
* [Fine Tune LLAMA 2](https://github.com/Azure/azureml-examples/blob/main/sdk/python/foundation-models/system/finetune/Llama-notebooks/text-classification/emotion-detection-llama-serverless-compute.ipynb)

0 commit comments

Comments
 (0)