Skip to content

Commit e0f58c2

Browse files
author
Larry Franks
committed
fixing links
1 parent 82ce719 commit e0f58c2

14 files changed

+15
-15
lines changed

articles/machine-learning/how-to-train-keras.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ Run this code on either of these environments:
4141
- Your own Jupyter Notebook server
4242

4343
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.15.0).
44-
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md#workspace).
44+
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md).
4545
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras) `keras_mnist.py` and `utils.py`
4646

4747
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.

articles/machine-learning/how-to-train-pytorch.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ Run this code on either of these environments:
3434

3535
- Your own Jupyter Notebook server
3636
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.15.0).
37-
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md#workspace).
37+
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md).
3838
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/pytorch/train-hyperparameter-tune-deploy-with-pytorch) `pytorch_train.py`
3939

4040
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/pytorch/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.

articles/machine-learning/how-to-train-scikit-learn.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ You can run this code in either an Azure Machine Learning compute instance, or y
3535
- Create a Jupyter Notebook server and run the code in the following sections.
3636

3737
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.13.0).
38-
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md#workspace).
38+
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md).
3939

4040
## Set up the experiment
4141

articles/machine-learning/how-to-train-tensorflow.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ Run this code on either of these environments:
3333

3434
- Your own Jupyter Notebook server
3535
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.15.0).
36-
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md#workspace).
36+
- [Create a workspace configuration file](v1/how-to-configure-environment-v1.md).
3737
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow) `tf_mnist.py` and `utils.py`
3838

3939
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.

articles/machine-learning/v1/how-to-configure-environment-v1.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ To configure a local development environment or remote VM:
9797

9898
1. Activate your newly created Python virtual environment.
9999
1. Install the [Azure Machine Learning Python SDK](/python/api/overview/azure/ml/install).
100-
1. To configure your local environment to use your Azure Machine Learning workspace, [create a workspace configuration file](#workspace) or use an existing one.
100+
1. To configure your local environment to use your Azure Machine Learning workspace, [create a workspace configuration file](#local-and-dsvm-only-create-a-workspace-configuration-file) or use an existing one.
101101

102102
Now that you have your local environment set up, you're ready to start working with Azure Machine Learning. See the [Azure Machine Learning Python getting started guide](tutorial-1st-experiment-hello-world.md) to get started.
103103

@@ -207,7 +207,7 @@ To use the Data Science VM as a development environment:
207207
conda activate AzureML
208208
```
209209

210-
1. To configure the Data Science VM to use your Azure Machine Learning workspace, [create a workspace configuration file](#workspace) or use an existing one.
210+
1. To configure the Data Science VM to use your Azure Machine Learning workspace, [create a workspace configuration file](#local-and-dsvm-only-create-a-workspace-configuration-file) or use an existing one.
211211

212212
Similar to local environments, you can use Visual Studio Code and the [Azure Machine Learning Visual Studio Code extension](#visual-studio-code) to interact with Azure Machine Learning.
213213

articles/machine-learning/v1/how-to-deploy-inferencing-gpus.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ Inference, or model scoring, is the phase where the deployed model is used to ma
5353
To connect to an existing workspace, use the following code:
5454

5555
> [!IMPORTANT]
56-
> This code snippet expects the workspace configuration to be saved in the current directory or its parent. For more information on creating a workspace, see [Create workspace resources](../quickstart-create-resources.md). For more information on saving the configuration to file, see [Create a workspace configuration file](how-to-configure-environment-v1.md#workspace).
56+
> This code snippet expects the workspace configuration to be saved in the current directory or its parent. For more information on creating a workspace, see [Create workspace resources](../quickstart-create-resources.md). For more information on saving the configuration to file, see [Create a workspace configuration file](how-to-configure-environment-v1.md).
5757
5858
```python
5959
from azureml.core import Workspace

articles/machine-learning/v1/how-to-train-keras.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ Run this code on either of these environments:
4141
- Your own Jupyter Notebook server
4242

4343
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.15.0).
44-
- [Create a workspace configuration file](how-to-configure-environment-v1.md#workspace).
44+
- [Create a workspace configuration file](how-to-configure-environment-v1.md).
4545
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras) `keras_mnist.py` and `utils.py`
4646

4747
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/keras/train-hyperparameter-tune-deploy-with-keras/train-hyperparameter-tune-deploy-with-keras.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.

articles/machine-learning/v1/how-to-train-pytorch.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ Run this code on either of these environments:
3434

3535
- Your own Jupyter Notebook server
3636
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.15.0).
37-
- [Create a workspace configuration file](how-to-configure-environment-v1.md#workspace).
37+
- [Create a workspace configuration file](how-to-configure-environment-v1.md).
3838
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/pytorch/train-hyperparameter-tune-deploy-with-pytorch) `pytorch_train.py`
3939

4040
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/pytorch/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.

articles/machine-learning/v1/how-to-train-scikit-learn.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ You can run this code in either an Azure Machine Learning compute instance, or y
3535
- Create a Jupyter Notebook server and run the code in the following sections.
3636

3737
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.13.0).
38-
- [Create a workspace configuration file](how-to-configure-environment-v1.md#workspace).
38+
- [Create a workspace configuration file](how-to-configure-environment-v1.md).
3939

4040
## Set up the experiment
4141

articles/machine-learning/v1/how-to-train-tensorflow.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ Run this code on either of these environments:
3333

3434
- Your own Jupyter Notebook server
3535
- [Install the Azure Machine Learning SDK](/python/api/overview/azure/ml/install) (>= 1.15.0).
36-
- [Create a workspace configuration file](how-to-configure-environment-v1.md#workspace).
36+
- [Create a workspace configuration file](how-to-configure-environment-v1.md).
3737
- [Download the sample script files](https://github.com/Azure/MachineLearningNotebooks/tree/master/how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow) `tf_mnist.py` and `utils.py`
3838

3939
You can also find a completed [Jupyter Notebook version](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) of this guide on the GitHub samples page. The notebook includes expanded sections covering intelligent hyperparameter tuning, model deployment, and notebook widgets.

0 commit comments

Comments
 (0)