Skip to content

Commit e1fe3a6

Browse files
authored
Merge pull request #164525 from yingqunpku/MVAD-improvement
[Anomaly Detector] Adding univariate labels and wording fixes
2 parents 4c8e001 + 8b84672 commit e1fe3a6

14 files changed

+88
-78
lines changed

articles/cognitive-services/Anomaly-Detector/How-to/deploy-anomaly-detection-on-container-instances.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ ms.date: 04/01/2020
1212
ms.author: mbullwin
1313
---
1414

15-
# Deploy an Anomaly Detector container to Azure Container Instances
15+
# Deploy an Anomaly Detector univariate container to Azure Container Instances
1616

1717
Learn how to deploy the Cognitive Services [Anomaly Detector](../anomaly-detector-container-howto.md) container to Azure [Container Instances](../../../container-instances/index.yml). This procedure demonstrates the creation of an Anomaly Detector resource. Then we discuss pulling the associated container image. Finally, we highlight the ability to exercise the orchestration of the two from a browser. Using containers can shift the developers' attention away from managing infrastructure to instead focusing on application development.
1818

articles/cognitive-services/Anomaly-Detector/How-to/deploy-anomaly-detection-on-iot-edge.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ ms.date: 12/03/2020
1212
ms.author: mbullwin
1313
---
1414

15-
# Deploy an Anomaly Detector module to IoT Edge
15+
# Deploy an Anomaly Detector univariate module to IoT Edge
1616

1717
Learn how to deploy the Cognitive Services [Anomaly Detector](../anomaly-detector-container-howto.md) module to an IoT Edge device. Once it's deployed into IoT Edge, the module runs in IoT Edge together with other modules as container instances. It exposes the exact same APIs as an Anomaly Detector container instance running in a standard docker container environment.
1818

articles/cognitive-services/Anomaly-Detector/How-to/identify-anomalies.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -12,11 +12,11 @@ ms.date: 10/01/2019
1212
ms.author: mbullwin
1313
---
1414

15-
# How to: Use the Anomaly Detector API on your time series data
15+
# How to: Use the Anomaly Detector univariate API on your time series data
1616

1717
The [Anomaly Detector API](https://westus2.dev.cognitive.microsoft.com/docs/services/AnomalyDetector/operations/post-timeseries-entire-detect) provides two methods of anomaly detection. You can either detect anomalies as a batch throughout your times series, or as your data is generated by detecting the anomaly status of the latest data point. The detection model returns anomaly results along with each data point's expected value, and the upper and lower anomaly detection boundaries. you can use these values to visualize the range of normal values, and anomalies in the data.
1818

19-
## Anomaly detection modes
19+
## Anomaly detection modes
2020

2121
The Anomaly Detector API provides detection modes: batch and streaming.
2222

articles/cognitive-services/Anomaly-Detector/anomaly-detector-container-configuration.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ ms.date: 05/07/2020
1212
ms.author: mbullwin
1313
---
1414

15-
# Configure Anomaly Detector containers
15+
# Configure Anomaly Detector univariate containers
1616

1717
The **Anomaly Detector** container runtime environment is configured using the `docker run` command arguments. This container has several required settings, along with a few optional settings. Several [examples](#example-docker-run-commands) of the command are available. The container-specific settings are the billing settings.
1818

articles/cognitive-services/Anomaly-Detector/concepts/anomaly-detection-best-practices.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
---
2-
title: Best practices when using the Anomaly Detector API
2+
title: Best practices when using the Anomaly Detector univariate API
33
titleSuffix: Azure Cognitive Services
44
description: Learn about best practices when detecting anomalies with the Anomaly Detector API.
55
services: cognitive-services
@@ -12,7 +12,7 @@ ms.date: 01/22/2021
1212
ms.author: mbullwin
1313
---
1414

15-
# Best practices for using the Anomaly Detector API
15+
# Best practices for using the Anomaly Detector univariate API
1616

1717
The Anomaly Detector API is a stateless anomaly detection service. The accuracy and performance of its results can be impacted by:
1818

articles/cognitive-services/Anomaly-Detector/concepts/best-practices-multivariate.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ ms.author: mbullwin
1313
keywords: anomaly detection, machine learning, algorithms
1414
---
1515

16-
# Multivariate Anomaly Detector best practices
16+
# Best practices for using the Anomaly Detector multivariate API
1717

1818
This article will provide guidance around recommended practices to follow when using the multivariate Anomaly Detector (MVAD) APIs.
1919
In this tutorial, you'll:

articles/cognitive-services/Anomaly-Detector/concepts/multivariate-architecture.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ ms.author: mbullwin
1313
keywords: anomaly detection, machine learning, algorithms
1414
---
1515

16-
# Predictive maintenance solution with Anomaly Detector multivariate
16+
# Predictive maintenance solution with Anomaly Detector (multivariate)
1717

1818
Many different industries need predictive maintenance solutions to reduce risks and gain actionable insights through processing data from their equipment. Predictive maintenance evaluates the condition of equipment by performing online monitoring. The goal is to perform maintenance before the equipment degrades or breaks down.
1919

articles/cognitive-services/Anomaly-Detector/concepts/troubleshoot.md

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,9 @@ keywords: anomaly detection, machine learning, algorithms
1717

1818
This article provides guidance on how to troubleshoot and remediate common error messages when using the multivariate API.
1919

20-
### Multivariate error codes
20+
## Multivariate error codes
2121

22-
#### Common Errors
22+
### Common Errors
2323

2424
| Error Code | HTTP Error Code | Error Message | Comment |
2525
| -------------------------- | --------------- | ---------------------------------------------- | ------------------------------------------------------------ |
@@ -30,7 +30,7 @@ This article provides guidance on how to troubleshoot and remediate common error
3030
| `StorageReadError` | 403 | | Same as `StorageWriteError`. |
3131
| `UnexpectedError` | 500 | | Please contact us with detailed error information. You could take the support options from [this document](/azure/cognitive-services/cognitive-services-support-options?context=/azure/cognitive-services/anomaly-detector/context/context) or email us at [[email protected]](mailto:[email protected]) |
3232

33-
#### Train a Multivariate Anomaly Detection Model
33+
### Train a Multivariate Anomaly Detection Model
3434

3535
| Error Code | HTTP Error Code | Error Message | Comment |
3636
| ------------------------ | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
@@ -46,13 +46,13 @@ This article provides guidance on how to troubleshoot and remediate common error
4646
| `RequiredEndTime` | 400 | The `'endTime'` field is required in the request. | Your training request has not specified a value for the `'startTime'` field. Example: `{"endTime": "2021-01-01T00:00:00Z"}`. |
4747
| `InvalidSlidingWindow` | 400 | The `'slidingWindow'` field must be an integer between 28 and 2880. | `'slidingWindow'` must be an integer between 28 and 2880 (inclusive). |
4848

49-
#### Get Multivariate Model with Model ID
49+
### Get Multivariate Model with Model ID
5050

5151
| Error Code | HTTP Error Code | Error Message | Comment |
5252
| --------------- | --------------- | ------------------------- | ------------------------------------------------------------ |
5353
| `ModelNotExist` | 404 | The model does not exist. | The model with corresponding model ID does not exist. Please check the model ID in the request URL. |
5454

55-
#### Anomaly Detection with a Trained Model
55+
### Anomaly Detection with a Trained Model
5656

5757
| Error Code | HTTP Error Code | Error Message | Comment |
5858
| ----------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
@@ -61,13 +61,14 @@ This article provides guidance on how to troubleshoot and remediate common error
6161
| `ModelNotReady` | 400 | The model is not ready yet. | The model is not ready yet. Please wait for a while until the training process completes. |
6262
| `InvalidFileSize` | 413 | File \<file> exceeds the file size limit (\<size limit> bytes). | The size of inference data exceeds the upper limit (2GB currently). Please use less data for inference. |
6363

64-
#### Get Detection Results
64+
### Get Detection Results
6565

6666
| Error Code | HTTP Error Code | Error Message | Comment |
6767
| ---------------- | --------------- | -------------------------- | ------------------------------------------------------------ |
6868
| `ResultNotExist` | 404 | The result does not exist. | The result per request does not exist. Either inference has not completed or result has expired (7 days). |
6969

70-
#### Data Processing Errors
70+
### Data Processing Errors
71+
7172
The following error codes do not have associated HTTP Error codes.
7273

7374
| Error Code | Error Message | Comment |

articles/cognitive-services/Anomaly-Detector/index.yml

Lines changed: 39 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -21,30 +21,33 @@ landingContent:
2121
linkLists:
2222
- linkListType: overview
2323
links:
24-
- text: What is the Anomaly Detector univariate?
24+
- text: What is Anomaly Detector (univariate)?
2525
url: overview.md
26-
- text: What is the Anomaly Detector multivariate?
26+
- text: What is Anomaly Detector (multivariate)?
2727
url: overview-multivariate.md
2828
- text: What's new in Anomaly Detector?
2929
url: whats-new.md
3030
- linkListType: get-started
3131
links:
32-
- text: Anomaly Detector demo
32+
- text: Demo web application (univariate)
3333
url: https://aka.ms/adDemo
3434
- linkListType: video
3535
links:
36-
- text: Introducing the Anomaly Detector API
36+
- text: Introducing the Anomaly Detector API (univariate)
3737
url: https://channel9.msdn.com/Shows/AI-Show/Introducing-Azure-Anomaly-Detector?WT.mc_id=ai-c9-niner
38-
- text: Algorithms used by the Anomaly Detection API
39-
url: https://www.youtube.com/embed/ERTaAnwCarM
38+
- text: Introducing the new multivariate capabilities
39+
url: https://channel9.msdn.com/Shows/AI-Show/New-to-Anomaly-Detector-Multivariate-Capabilities
40+
- text: More videos ...
41+
url: whats-new.md#videos
4042
- linkListType: reference
4143
links:
42-
- text: Introducing Azure Anomaly Detector API
44+
- text: Introducing Azure Anomaly Detector API (univariate)
4345
url: https://techcommunity.microsoft.com/t5/AI-Customer-Engineering-Team/Introducing-Azure-Anomaly-Detector-API/ba-p/490162
44-
- text: Overview of SR-CNN algorithm
45-
url: https://techcommunity.microsoft.com/t5/AI-Customer-Engineering-Team/Overview-of-SR-CNN-algorithm-in-Azure-Anomaly-Detector/ba-p/982798
46-
- text: Algorithm used in anomaly detection (KDD paper)
47-
url: https://arxiv.org/abs/1906.03821
46+
- text: Introducing Multivariate Anomaly Detection
47+
url: https://techcommunity.microsoft.com/t5/azure-ai/introducing-multivariate-anomaly-detection/ba-p/2260679
48+
- text: More technical articles ...
49+
url: whats-new.md#technical-articles
50+
4851

4952
- title: "Detect anomalies in your data"
5053
linkLists:
@@ -56,6 +59,8 @@ landingContent:
5659
url: ../anomaly-detector/quickstarts/client-libraries.md?pivots=programming-language-javascript
5760
- text: Using Python (univariate)
5861
url: ../anomaly-detector/quickstarts/client-libraries.md?pivots=programming-language-python
62+
- linkListType: quickstart
63+
links:
5964
- text: Using C# (multivariate)
6065
url: ../anomaly-detector/quickstarts/client-libraries-multivariate.md?pivots=programming-language-csharp
6166
- text: Using JavaScript (multivariate)
@@ -64,8 +69,6 @@ landingContent:
6469
url: ../anomaly-detector/quickstarts/client-libraries-multivariate.md?pivots=programming-language-python
6570
- text: Using Java (multivariate)
6671
url: ../anomaly-detector/quickstarts/client-libraries-multivariate.md?pivots=programming-language-java
67-
68-
6972
- linkListType: tutorial
7073
links:
7174
- text: Learn Multivariate Anomaly Detection in one hour
@@ -77,30 +80,32 @@ landingContent:
7780
linkLists:
7881
- linkListType: concept
7982
links:
80-
- text: Adjust anomaly detection modes and parameters for your data.
83+
- text: Adjust anomaly detection modes and parameters for your data (univariate)
8184
url: how-to/identify-anomalies.md
82-
- text: Use best practices to optimize your anomaly detection results.
85+
- text: Use best practices to optimize your anomaly detection results (univariate)
8386
url: concepts/anomaly-detection-best-practices.md
87+
- text: Use best practices to optimize your anomaly detection results (multivariate)
88+
url: concepts/best-practices-multivariate.md
8489
- linkListType: video
8590
links:
86-
- text: Anomaly Detector best practices
91+
- text: Anomaly Detector best practices (univariate)
8792
url: https://channel9.msdn.com/Shows/AI-Show/Anomaly-Detector-v10-Best-Practices
8893

8994
- title: Use Docker containers
9095
linkLists:
9196
- linkListType: how-to-guide
9297
links:
93-
- text: Install and run Anomaly Detector containers
98+
- text: Install and run Anomaly Detector containers (univariate)
9499
url: anomaly-detector-container-howto.md
95-
- text: Configure Anomaly Detector containers
100+
- text: Configure Anomaly Detector containers (univariate)
96101
url: anomaly-detector-container-configuration.md
97-
- text: Deploy a container instance to Azure
102+
- text: Deploy a container instance to Azure (univariate)
98103
url: how-to/deploy-anomaly-detection-on-container-instances.md
99-
- text: Deploy to IoT Edge
104+
- text: Deploy to IoT Edge (univariate)
100105
url: how-to/deploy-anomaly-detection-on-iot-edge.md
101106
- linkListType: video
102107
links:
103-
- text: Bring Anomaly Detector on-premises with containers support
108+
- text: Bring Anomaly Detector on-premises with containers support (univariate)
104109
url: https://channel9.msdn.com/Shows/AI-Show/Bring-Anomaly-Detector-on-premise-with-containers-support
105110

106111
- title: Help and feedback
@@ -112,7 +117,7 @@ landingContent:
112117

113118
- linkListType: reference
114119
links:
115-
- text: Troubleshooting multivariate
120+
- text: Error codes (multivariate)
116121
url: concepts/troubleshoot.md
117122
- text: Support and help options
118123
url: ../cognitive-services-support-options.md?context=/azure/cognitive-services/anomaly-detector/context/context
@@ -121,29 +126,29 @@ landingContent:
121126
linkLists:
122127
- linkListType: reference
123128
links:
124-
- text: Univariate REST API
129+
- text: REST API (univariate)
125130
url: https://aka.ms/anomaly-detector-rest-api-ref
126-
- text: .NET SDK
131+
- text: .NET SDK (univariate)
127132
url: https://aka.ms/anomaly-detector-dotnet-ref
128-
- text: .Python SDK
133+
- text: .Python SDK (univariate)
129134
url: https://go.microsoft.com/fwlink/?linkid=2090370
130-
- text: Go SDK
135+
- text: Go SDK (univariate)
131136
url: https://go.microsoft.com/fwlink/?linkid=2089915
132-
- text: Node.js SDK
137+
- text: Node.js SDK (univariate)
133138
url: https://go.microsoft.com/fwlink/?linkid=2090788
134-
- text: Azure PowerShell
139+
- text: Azure PowerShell (univariate)
135140
url: /powershell/module/az.cognitiveservices/#cognitive_services
136-
- text: Azure CLI
141+
- text: Azure CLI (univariate)
137142
url: /cli/azure/cognitiveservices#az_cognitiveservices_list
138143
- linkListType: reference
139144
links:
140-
- text: Multivariate REST API
145+
- text: REST API (multivariate)
141146
url: https://westus2.dev.cognitive.microsoft.com/docs/services/AnomalyDetector-v1-1-preview/operations/DetectAnomaly
142-
- text: .NET SDK
147+
- text: .NET SDK (multivariate)
143148
url: https://go.microsoft.com/fwlink/?linkid=2165601&clcid=0x409
144-
- text: Python SDK
149+
- text: Python SDK (multivariate)
145150
url: https://go.microsoft.com/fwlink/?linkid=2165298&clcid=0x409
146-
- text: Java SDK
151+
- text: Java SDK (multivariate)
147152
url: https://go.microsoft.com/fwlink/?linkid=2165600&clcid=0x409
148-
- text: Node.js SDK
153+
- text: Node.js SDK (multivariate)
149154
url: https://go.microsoft.com/fwlink/?linkid=2165523&clcid=0x409

articles/cognitive-services/Anomaly-Detector/overview-multivariate.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
---
22
title: What is the Anomaly Detector Multivariate API?
33
titleSuffix: Azure Cognitive Services
4-
description: Overview of new Anomaly Detector public preview multivariate APIs.
4+
description: Overview of new Anomaly Detector preview multivariate APIs.
55
services: cognitive-services
66
author: mrbullwinkle
77
manager: nitinme
@@ -13,7 +13,7 @@ ms.author: mbullwin
1313
keywords: anomaly detection, machine learning, algorithms
1414
---
1515

16-
# Multivariate time series Anomaly Detection (public preview)
16+
# Multivariate time series Anomaly Detection (preview)
1717

1818
The new **multivariate anomaly detection** APIs further enable developers by easily integrating advanced AI for detecting anomalies from groups of metrics, without the need for machine learning knowledge or labeled data. Dependencies and inter-correlations between up to 300 different signals are now automatically counted as key factors. This new capability helps you to proactively protect your complex systems such as software applications, servers, factory machines, spacecraft, or even your business, from failures.
1919

@@ -36,7 +36,7 @@ To run the Notebook, you should get a valid Anomaly Detector API **subscription
3636

3737
## Region support
3838

39-
The public preview of Anomaly Detector multivariate is currently available in six regions: West US2, West Europe, East US2, South Central US, East US, and UK South.
39+
The preview of Anomaly Detector multivariate is currently available in six regions: West US2, West Europe, East US2, South Central US, East US, and UK South.
4040

4141
## Algorithms
4242

0 commit comments

Comments
 (0)