Skip to content

Commit e327454

Browse files
committed
edit 1
1 parent c31c3fd commit e327454

File tree

3 files changed

+8
-8
lines changed

3 files changed

+8
-8
lines changed

articles/machine-learning/how-to-image-processing-batch.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ __endpoint.yml__
6666

6767
Run the following code to create the endpoint.
6868

69-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_batch_endpoint" :::
69+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_endpoint" :::
7070

7171
# [Python](#tab/python)
7272

@@ -193,7 +193,7 @@ One the scoring script is created, it's time to create a batch deployment for it
193193

194194
Then, create the deployment with the following command:
195195

196-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_batch_deployment_set_default" :::
196+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_deployment" :::
197197

198198
# [Python](#tab/python)
199199

@@ -342,7 +342,7 @@ For testing our endpoint, we are going to use a sample of 1000 images from the o
342342

343343
To download the predictions, use the following command:
344344

345-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="download_output" :::
345+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="download_outputs" :::
346346

347347
# [Python](#tab/python)
348348

@@ -398,7 +398,7 @@ On those cases, we may want to perform inference on the entire batch of data. Th
398398

399399
Then, create the deployment with the following command:
400400

401-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_batch_deployment_ht" :::
401+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/imagenet-classifier/deploy-and-run.sh" ID="create_deployment_ht" :::
402402

403403
# [Python](#tab/python)
404404

articles/machine-learning/how-to-nlp-processing-batch.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -222,7 +222,7 @@ Let's create the deployment that will host the model:
222222

223223
Then, create the deployment with the following command:
224224

225-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_batch_deployment_set_default" :::
225+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/huggingface-text-summarization/deploy-and-run.sh" ID="create_deployment" :::
226226

227227
# [Python](#tab/python)
228228

articles/machine-learning/how-to-use-batch-endpoints.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ A batch endpoint is an HTTPS endpoint that clients can call to trigger a batch i
9797
9898
Run the following code to create a batch deployment under the batch endpoint and set it as the default deployment.
9999
100-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_batch_endpoint" :::
100+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_endpoint" :::
101101
102102
# [Python](#tab/python)
103103
@@ -176,7 +176,7 @@ For instance, the following example downloads the output __score__ from the job.
176176

177177
# [Azure CLI](#tab/cli)
178178

179-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="download_scores" :::
179+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="download_outputs" :::
180180

181181
# [Python](#tab/python)
182182

@@ -212,7 +212,7 @@ To add a new deployment to an existing endpoint, use the code:
212212

213213
# [Azure CLI](#tab/cli)
214214

215-
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_new_deployment_non_default" :::
215+
:::code language="azurecli" source="~/azureml-examples-main/cli/endpoints/batch/deploy-models/mnist-classifier/deploy-and-run.sh" ID="create_deployment_non_default" :::
216216

217217
# [Python](#tab/python)
218218

0 commit comments

Comments
 (0)