Skip to content

Commit e680ddf

Browse files
authored
Merge pull request #218719 from sreekzz/patch-124
Removed Storm contents Phase 3
2 parents 889325a + 0e406e1 commit e680ddf

8 files changed

+19
-98
lines changed

articles/hdinsight/hdinsight-administer-use-dotnet-sdk.md

Lines changed: 1 addition & 72 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ description: Learn how to perform administrative tasks for the Apache Hadoop clu
55
ms.service: hdinsight
66
ms.custom: "hdinsightactive, devx-track-csharp"
77
ms.topic: conceptual
8-
ms.date: 06/30/2022
8+
ms.date: 11/17/2022
99

1010

1111
---
@@ -151,77 +151,6 @@ The impact of changing the number of data nodes for each type of cluster support
151151
>balancer
152152
```
153153

154-
* Apache Storm
155-
156-
You can seamlessly add or remove data nodes to your Storm cluster while it is running. But after a successful completion of the scaling operation, you will need to rebalance the topology.
157-
158-
Rebalancing can be accomplished in two ways:
159-
160-
* Storm web UI
161-
* Command-line interface (CLI) tool
162-
163-
Please refer to the [Apache Storm documentation](https://storm.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html) for more details.
164-
165-
The Storm web UI is available on the HDInsight cluster:
166-
167-
:::image type="content" source="./media/hdinsight-administer-use-powershell/hdinsight-portal-scale-cluster-storm-rebalance.png" alt-text="HDInsight Storm scale rebalance":::
168-
169-
Here is an example how to use the CLI command to rebalance the Storm topology:
170-
171-
172-
```console
173-
## Reconfigure the topology "mytopology" to use 5 worker processes,
174-
## the spout "blue-spout" to use 3 executors, and
175-
## the bolt "yellow-bolt" to use 10 executors
176-
$ storm rebalance mytopology -n 5 -e blue-spout=3 -e yellow-bolt=10
177-
```
178-
179-
The following code snippet shows how to resize a cluster synchronously or asynchronously:
180-
181-
```csharp
182-
_hdiManagementClient.Clusters.Resize("<Resource Group Name>", "<Cluster Name>", <New Size>);
183-
_hdiManagementClient.Clusters.ResizeAsync("<Resource Group Name>", "<Cluster Name>", <New Size>);
184-
```
185-
186-
## Grant/revoke access
187-
188-
HDInsight clusters have the following HTTP web services (all of these services have RESTful endpoints):
189-
190-
* ODBC
191-
* JDBC
192-
* Apache Ambari
193-
* Apache Oozie
194-
* Apache Templeton
195-
196-
By default, these services are granted for access. You can revoke/grant the access. To revoke:
197-
198-
```csharp
199-
var httpParams = new HttpSettingsParameters
200-
{
201-
HttpUserEnabled = false,
202-
HttpUsername = "admin",
203-
HttpPassword = "*******",
204-
};
205-
_hdiManagementClient.Clusters.ConfigureHttpSettings("<Resource Group Name>, <Cluster Name>, httpParams);
206-
```
207-
208-
To grant:
209-
210-
```csharp
211-
var httpParams = new HttpSettingsParameters
212-
{
213-
HttpUserEnabled = enable,
214-
HttpUsername = "admin",
215-
HttpPassword = "*******",
216-
};
217-
_hdiManagementClient.Clusters.ConfigureHttpSettings("<Resource Group Name>, <Cluster Name>, httpParams);
218-
```
219-
220-
> [!NOTE]
221-
> By granting/revoking the access, you will reset the cluster user name and password.
222-
223-
This can also be done via the Portal. See [Manage Apache Hadoop clusters in HDInsight by using the Azure portal](hdinsight-administer-use-portal-linux.md).
224-
225154
## Update HTTP user credentials
226155

227156
It is the same procedure as Grant/revoke HTTP access. If the cluster has been granted the HTTP access, you must first revoke it. And then grant the access with new HTTP user credentials.

articles/hdinsight/hdinsight-administer-use-portal-linux.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ description: Learn how to create and manage Azure HDInsight clusters using the A
44
ms.service: hdinsight
55
ms.topic: conceptual
66
ms.custom: hdinsightactive
7-
ms.date: 04/01/2022
7+
ms.date: 11/11/2022
88
---
99

1010
# Manage Apache Hadoop clusters in HDInsight by using the Azure portal
@@ -102,7 +102,7 @@ From the [cluster home page](#homePage), under **Settings** select **Properties
102102
|REGION|Azure location. For a list of supported Azure locations, see the **Region** drop-down list box on [HDInsight pricing](https://azure.microsoft.com/pricing/details/hdinsight/).|
103103
|DATE CREATED|The date the cluster was deployed.|
104104
|OPERATING SYSTEM|Either **Windows** or **Linux**.|
105-
|TYPE|Hadoop, HBase, Storm, Spark.|
105+
|TYPE|Hadoop, HBase, Spark.|
106106
|Version|See [HDInsight versions](hdinsight-component-versioning.md).|
107107
|Minimum TLS version|The TLS version.|
108108
|SUBSCRIPTION|Subscription name.|

articles/hdinsight/hdinsight-apache-kafka-spark-structured-streaming.md

Lines changed: 1 addition & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ description: Learn how to use Apache Spark streaming to get data into or out of
44
ms.service: hdinsight
55
ms.topic: tutorial
66
ms.custom: hdinsightactive,seodec18,seoapr2020
7-
ms.date: 06/10/2022
7+
ms.date: 11/17/2022
88

99
#Customer intent: As a developer, I want to learn how to use Spark Structured Streaming with Kafka on HDInsight.
1010
---
@@ -323,9 +323,3 @@ To remove the resource group using the Azure portal:
323323
>
324324
> Deleting a Kafka on HDInsight cluster deletes any data stored in Kafka.
325325
326-
## Next steps
327-
328-
In this tutorial, you learned how to use Apache Spark Structured Streaming. To write and read data from Apache Kafka on HDInsight. Use the following link to learn how to use Apache Storm with Kafka.
329-
330-
> [!div class="nextstepaction"]
331-
> [Use Apache Storm with Apache Kafka](hdinsight-apache-storm-with-kafka.md)

articles/hdinsight/hdinsight-apache-spark-with-kafka.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ description: Learn how to use Apache Spark to stream data into or out of Apache
44
ms.service: hdinsight
55
ms.topic: how-to
66
ms.custom: hdinsightactive
7-
ms.date: 07/18/2022
7+
ms.date: 11/17/2022
88
---
99

1010
# Apache Spark streaming (DStream) example with Apache Kafka on HDInsight
@@ -80,4 +80,3 @@ In this example, you learned how to use Spark to read and write to Kafka. Use th
8080

8181
* [Get started with Apache Kafka on HDInsight](kafka/apache-kafka-get-started.md)
8282
* [Use MirrorMaker to create a replica of Apache Kafka on HDInsight](kafka/apache-kafka-mirroring.md)
83-
* [Use Apache Storm with Apache Kafka on HDInsight](hdinsight-apache-storm-with-kafka.md)

articles/hdinsight/hdinsight-apps-install-applications.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ description: Learn how to install third-party Apache Hadoop applications on Azur
44
ms.service: hdinsight
55
ms.custom: hdinsightactive
66
ms.topic: how-to
7-
ms.date: 08/26/2022
7+
ms.date: 11/17/2022
88

99
---
1010
# Install third-party Apache Hadoop applications on Azure HDInsight
@@ -20,14 +20,14 @@ The following list shows the published applications:
2020
|[AtScale Intelligence Platform](https://aws.amazon.com/marketplace/pp/AtScale-AtScale-Intelligence-Platform/B07BWWHH18) |Hadoop |AtScale turns your HDInsight cluster into a scale-out OLAP server, allowing you to query billions of rows of data interactively using the BI tools you already know, own, and love – from Microsoft Excel, Power BI, Tableau Software to QlikView. |
2121
|[Datameer](https://azuremarketplace.microsoft.com/marketplace/apps/datameer.datameer) |Hadoop |Datameer's self-service scalable platform for preparing, exploring, and governing your data for analytics accelerates turning complex multisource data into valuable business-ready information, delivering faster, smarter insights at an enterprise-scale. |
2222
|[Dataiku DSS on HDInsight](https://azuremarketplace.microsoft.com/marketplace/apps/dataiku.dataiku-data-science-studio) |Hadoop, Spark |Dataiku DSS in an enterprise data science platform that lets data scientists and data analysts collaborate to design and run new data products and services more efficiently, turning raw data into impactful predictions. |
23-
|[WANdisco Fusion HDI App](https://community.wandisco.com/s/article/Use-WANdisco-Fusion-for-parallel-operation-of-ADLS-Gen1-and-Gen2) |Hadoop, Spark,HBase,Storm,Kafka |Keeping data consistent in a distributed environment is a massive data operations challenge. WANdisco Fusion, an enterprise-class software platform, solves this problem by enabling unstructured data consistency across any environment. |
23+
|[WANdisco Fusion HDI App](https://community.wandisco.com/s/article/Use-WANdisco-Fusion-for-parallel-operation-of-ADLS-Gen1-and-Gen2) |Hadoop, Spark,HBase,Kafka |Keeping data consistent in a distributed environment is a massive data operations challenge. WANdisco Fusion, an enterprise-class software platform, solves this problem by enabling unstructured data consistency across any environment. |
2424
|H2O SparklingWater for HDInsight |Spark |H2O Sparkling Water supports the following distributed algorithms: GLM, Naïve Bayes, Distributed Random Forest, Gradient Boosting Machine, Deep Neural Networks, Deep learning, K-means, PCA, Generalized Low Rank Models, Anomaly Detection, Autoencoders. |
25-
|[Striim for Real-Time Data Integration to HDInsight](https://azuremarketplace.microsoft.com/marketplace/apps/striim.striimbyol) |Hadoop,HBase,Storm,Spark,Kafka |Striim (pronounced "stream") is an end-to-end streaming data integration + intelligence platform, enabling continuous ingestion, processing, and analytics of disparate data streams. |
25+
|[Striim for Real-Time Data Integration to HDInsight](https://azuremarketplace.microsoft.com/marketplace/apps/striim.striimbyol) |Hadoop,HBase,Spark,Kafka |Striim (pronounced "stream") is an end-to-end streaming data integration + intelligence platform, enabling continuous ingestion, processing, and analytics of disparate data streams. |
2626
|[Jumbune Enterprise-Accelerating BigData Analytics](https://azuremarketplace.microsoft.com/marketplace/apps/impetus-infotech-india-pvt-ltd.impetus_jumbune) |Hadoop, Spark |At a high level, Jumbune assists enterprises by, 1. Accelerating Tez, MapReduce & Spark engine based Hive, Java, Scala workload performance. 2. Proactive Hadoop Cluster Monitoring, 3. Establishing Data Quality management on distributed file system. |
2727
|[Kyligence Enterprise](https://azuremarketplace.microsoft.com/marketplace/apps/kyligence.kyligence-cloud-saas) |Hadoop,HBase,Spark |Powered by Apache Kylin, Kyligence Enterprise Enables BI on Big Data. As an enterprise OLAP engine on Hadoop, Kyligence Enterprise empowers business analyst to architect BI on Hadoop with industry-standard data warehouse and BI methodology. |
2828
|[StreamSets Data Collector for HDInsight Cloud](https://azuremarketplace.microsoft.com/marketplace/apps/streamsets.streamsets-data-collector-hdinsight) |Hadoop,HBase,Spark,Kafka |StreamSets Data Collector is a lightweight, powerful engine that streams data in real time. Use Data Collector to route and process data in your data streams. It comes with a 30 day trial license. |
2929
|[Trifacta Wrangler Enterprise](https://azuremarketplace.microsoft.com/marketplace/apps/trifactainc1587522950142.trifactaazure) |Hadoop, Spark,HBase |Trifacta Wrangler Enterprise for HDInsight supports enterprise-wide data wrangling for any scale of data. The cost of running Trifacta on Azure is a combination of Trifacta subscription costs plus the Azure infrastructure costs for the virtual machines. |
30-
|[Unifi Data Platform](https://www.crunchbase.com/organization/unifi-software) |Hadoop,HBase,Storm,Spark |The Unifi Data Platform is a seamlessly integrated suite of self-service data tools designed to empower the business user to tackle data challenges that drive incremental revenue, reduce costs or operational complexity. |
30+
|[Unifi Data Platform](https://www.crunchbase.com/organization/unifi-software) |Hadoop,HBase,Spark |The Unifi Data Platform is a seamlessly integrated suite of self-service data tools designed to empower the business user to tackle data challenges that drive incremental revenue, reduce costs or operational complexity. |
3131

3232
The instructions provided in this article use Azure portal. You can also export the Azure Resource Manager template from the portal or obtain a copy of the Resource Manager template from vendors, and use Azure PowerShell and Azure Classic CLI to deploy the template. See [Create Apache Hadoop clusters on HDInsight using Resource Manager templates](hdinsight-hadoop-create-linux-clusters-arm-templates.md).
3333

articles/hdinsight/hdinsight-apps-publish-applications.md

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,10 @@
11
---
22
title: Publish Azure HDInsight applications
33
description: Learn how to create an HDInsight application, and then publish it in the Azure Marketplace.
4-
54
ms.service: hdinsight
65
ms.custom: hdinsightactive
76
ms.topic: how-to
8-
ms.date: 05/14/2018
7+
ms.date: 11/17/2022
98

109
---
1110
# Publish an HDInsight application in the Azure Marketplace
@@ -31,15 +30,15 @@ Two steps are involved in publishing applications in the Marketplace. First, def
3130
"handler": "Microsoft.HDInsight",
3231
"version": "0.0.1-preview",
3332
"clusterFilters": {
34-
"types": ["Hadoop", "HBase", "Storm", "Spark"],
33+
"types": ["Hadoop", "HBase", "Spark"],
3534
"versions": ["3.6"]
3635
}
3736
}
3837
```
3938

4039
| Field | Description | Possible values |
4140
| --- | --- | --- |
42-
| types |The cluster types that the application is compatible with. |Hadoop, HBase, Storm, Spark (or any combination of these) |
41+
| types |The cluster types that the application is compatible with. |Hadoop, HBase, Spark (or any combination of these) |
4342
| versions |The HDInsight cluster types that the application is compatible with. |3.4 |
4443

4544
## Application installation script

articles/hdinsight/hdinsight-autoscale-clusters.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ description: Use the Autoscale feature to automatically scale Azure HDInsight cl
44
ms.service: hdinsight
55
ms.topic: how-to
66
ms.custom: contperf-fy21q1, contperf-fy21q2
7-
ms.date: 02/11/2022
7+
ms.date: 11/17/2022
88
---
99

1010
# Automatically scale Azure HDInsight clusters
@@ -66,12 +66,12 @@ For scale-down, Autoscale issues a request to remove a certain number of nodes.
6666
6767
The following table describes the cluster types and versions that are compatible with the Autoscale feature.
6868

69-
| Version | Spark | Hive | Interactive Query | HBase | Kafka | Storm | ML |
69+
| Version | Spark | Hive | Interactive Query | HBase | Kafka | ML |
7070
|---|---|---|---|---|---|---|---|
71-
| HDInsight 3.6 without ESP | Yes | Yes | Yes* | No | No | No | No |
72-
| HDInsight 4.0 without ESP | Yes | Yes | Yes* | No | No | No | No |
73-
| HDInsight 3.6 with ESP | Yes | Yes | Yes* | No | No | No | No |
74-
| HDInsight 4.0 with ESP | Yes | Yes | Yes* | No | No | No | No |
71+
| HDInsight 3.6 without ESP | Yes | Yes | Yes* | No | No | No |
72+
| HDInsight 4.0 without ESP | Yes | Yes | Yes* | No | No | No |
73+
| HDInsight 3.6 with ESP | Yes | Yes | Yes* | No | No | No |
74+
| HDInsight 4.0 with ESP | Yes | Yes | Yes* | No | No | No |
7575

7676
\* Interactive Query clusters can only be configured for schedule-based scaling, not load-based.
7777

articles/hdinsight/hdinsight-hadoop-development-using-azure-resource-manager.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -237,7 +237,7 @@ This section provides pointers to more information on how to perform certain tas
237237
| Submit an Apache Sqoop job using .NET SDK |See [Submit Apache Sqoop jobs](hadoop/apache-hadoop-use-sqoop-dotnet-sdk.md) |
238238
| List HDInsight clusters using .NET SDK |See [List HDInsight clusters](hdinsight-administer-use-dotnet-sdk.md#list-clusters) |
239239
| Scale HDInsight clusters using .NET SDK |See [Scale HDInsight clusters](hdinsight-administer-use-dotnet-sdk.md#scale-clusters) |
240-
| Grant/revoke access to HDInsight clusters using .NET SDK |See [Grant/revoke access to HDInsight clusters](hdinsight-administer-use-dotnet-sdk.md#grantrevoke-access) |
240+
| Grant/revoke access to HDInsight clusters using .NET SDK |See [Grant/revoke access to HDInsight clusters](hdinsight-administer-use-dotnet-sdk.md) |
241241
| Update HTTP user credentials for HDInsight clusters using .NET SDK |See [Update HTTP user credentials for HDInsight clusters](hdinsight-administer-use-dotnet-sdk.md#update-http-user-credentials) |
242242
| Find the default storage account for HDInsight clusters using .NET SDK |See [Find the default storage account for HDInsight clusters](hdinsight-administer-use-dotnet-sdk.md#find-the-default-storage-account) |
243243
| Delete HDInsight clusters using .NET SDK |See [Delete HDInsight clusters](hdinsight-administer-use-dotnet-sdk.md#delete-clusters) |

0 commit comments

Comments
 (0)