Skip to content

Commit e9647e8

Browse files
authored
Update how-to-deploy-mlflow-models-online-endpoints.md
1 parent 666ec60 commit e9647e8

File tree

1 file changed

+15
-2
lines changed

1 file changed

+15
-2
lines changed

articles/machine-learning/how-to-deploy-mlflow-models-online-endpoints.md

Lines changed: 15 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -565,7 +565,7 @@ Use the following steps to deploy an MLflow model with a custom scoring script.
565565
566566
__score.py__
567567
568-
:::code language="python" source="~/azureml-examples-main/cli/endpoints/online/ncd/sklearn-diabetes/src/score.py":::
568+
:::code language="python" source="~/azureml-examples-main/cli/endpoints/online/ncd/sklearn-diabetes/src/score.py" highlight="14":::
569569
570570
> [!TIP]
571571
> The previous scoring script is provided as an example about how to perform inference of an MLflow model. You can adapt this example to your needs or change any of its parts to reflect your scenario.
@@ -624,7 +624,20 @@ Use the following steps to deploy an MLflow model with a custom scoring script.
624624
625625
Create a deployment configuration file:
626626
627-
:::code language="yaml" source="~/azureml-examples-main/cli/endpoints/online/ncd/sklearn-deployment-with-script.yaml":::
627+
```yaml
628+
$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json
629+
name: sklearn-diabetes-custom
630+
endpoint_name: my-endpoint
631+
model: azureml:sklearn-diabetes@latest
632+
environment:
633+
image: mcr.microsoft.com/azureml/openmpi3.1.2-ubuntu18.04
634+
conda_file: sklearn-diabetes/environment/conda.yml
635+
code_configuration:
636+
code: sklearn-diabetes/src
637+
scoring_script: score.py
638+
instance_type: Standard_F2s_v2
639+
instance_count: 1
640+
```
628641
629642
Create the deployment:
630643

0 commit comments

Comments
 (0)