You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: articles/dns/dns-private-resolver-overview.md
+2-2Lines changed: 2 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -81,7 +81,7 @@ A summary of resolver endpoints and rulesets is provided in this article. For de
81
81
82
82
An inbound endpoint enables name resolution from on-premises or other private locations via an IP address that is part of your private virtual network address space. To resolve your Azure private DNS zone from on-premises, enter the IP address of the inbound endpoint into your on-premises DNS conditional forwarder. The on-premises DNS conditional forwarder must have a network connection to the virtual network.
83
83
84
-
The inbound endpoint requires a subnet in the VNet where it’s provisioned. The subnet can only be delegated to **Microsoft.Network/dnsResolvers** and can't be used for other services. DNS queries received by the inbound endpoint will ingress to Azure. You can resolve names in scenarios where you have Private DNS zones, including VMs that are using auto registration, or Private Link enabled services.
84
+
The inbound endpoint requires a subnet in the VNet where it’s provisioned. The subnet can only be delegated to **Microsoft.Network/dnsResolvers** and can't be used for other services. DNS queries received by the inbound endpoint ingress to Azure. You can resolve names in scenarios where you have Private DNS zones, including VMs that are using auto registration, or Private Link enabled services.
85
85
86
86
> [!NOTE]
87
87
> The IP address assigned to an inbound endpoint is not a static IP address that you can choose. Typically, the 5th available IP address in the subnet is assigned. However, if the inbound endpoint is reprovisioned, this IP address might change. The IP address does not change unless the inbound endpoint is reprovisioned.
@@ -100,7 +100,7 @@ A DNS forwarding ruleset is a group of DNS forwarding rules (up to 1000) that ca
100
100
101
101
## DNS forwarding rules
102
102
103
-
A DNS forwarding rule includes one or more target DNS servers that will be used for conditional forwarding, and is represented by:
103
+
A DNS forwarding rule includes one or more target DNS servers that are used for conditional forwarding, and is represented by:
Copy file name to clipboardExpand all lines: articles/dns/private-resolver-endpoints-rulesets.md
+8-8Lines changed: 8 additions & 8 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -13,7 +13,7 @@ ms.author: greglin
13
13
14
14
# Azure DNS Private Resolver endpoints and rulesets
15
15
16
-
In this article, you'll learn about components of the [Azure DNS Private Resolver](dns-private-resolver-overview.md). Inbound endpoints, outbound endpoints, and DNS forwarding rulesets are discussed. Properties and settings of these components are described, and examples are provided for how to use them.
16
+
In this article, you learn about components of the [Azure DNS Private Resolver](dns-private-resolver-overview.md). Inbound endpoints, outbound endpoints, and DNS forwarding rulesets are discussed. Properties and settings of these components are described, and examples are provided for how to use them.
17
17
18
18
The architecture for Azure DNS Private Resolver is summarized in the following figure. In this example network, a DNS resolver is deployed in a hub vnet that peers with a spoke vnet.
19
19
@@ -28,7 +28,7 @@ An ExpressRoute-connected on-premises network is also shown in the figure, with
28
28
29
29
## Inbound endpoints
30
30
31
-
As the name suggests, inbound endpoints will ingress to Azure. Inbound endpoints provide an IP address to forward DNS queries from on-premises and other locations outside your virtual network. DNS queries sent to the inbound endpoint are resolved using Azure DNS. Private DNS zones that are linked to the virtual network where the inbound endpoint is provisioned are resolved by the inbound endpoint.
31
+
As the name suggests, inbound endpoints ingress to Azure. Inbound endpoints provide an IP address to forward DNS queries from on-premises and other locations outside your virtual network. DNS queries sent to the inbound endpoint are resolved using Azure DNS. Private DNS zones that are linked to the virtual network where the inbound endpoint is provisioned are resolved by the inbound endpoint.
32
32
33
33
The IP address associated with an inbound endpoint is always part of the private virtual network address space where the private resolver is deployed. No other resources can exist in the same subnet with the inbound endpoint. The following screenshot shows an inbound endpoint with a virtual IP address (VIP) of **10.10.0.4** inside the subnet `snet-E-inbound` provisioned within a virtual network with address space of 10.10.0.0/16.
34
34
@@ -58,7 +58,7 @@ A ruleset can't be linked to a virtual network in another region. For more infor
58
58
59
59
### Ruleset links
60
60
61
-
When you link a ruleset to a virtual network, resources within that virtual network will use the DNS forwarding rules enabled in the ruleset. The linked virtual networks are not required to peer with the virtual network where the outbound endpoint exists, but these networks can be configured as peers. This configuration is common in a hub and spoke design. In this hub and spoke scenario, the spoke vnet doesn't need to be linked to the private DNS zone in order to resolve resource records in the zone. In this case, the forwarding ruleset rule for the private zone sends queries to the hub vnet's inbound endpoint. For example: **azure.contoso.com** to **10.10.0.4**.
61
+
When you link a ruleset to a virtual network, resources within that virtual network will use the DNS forwarding rules enabled in the ruleset. The linked virtual networks aren't required to peer with the virtual network where the outbound endpoint exists, but these networks can be configured as peers. This configuration is common in a hub and spoke design. In this hub and spoke scenario, the spoke vnet doesn't need to be linked to the private DNS zone in order to resolve resource records in the zone. In this case, the forwarding ruleset rule for the private zone sends queries to the hub vnet's inbound endpoint. For example: **azure.contoso.com** to **10.10.0.4**.
62
62
63
63
The following screenshot shows a DNS forwarding ruleset linked to the spoke virtual network: **myeastspoke**.
64
64
@@ -78,7 +78,7 @@ DNS forwarding rules (ruleset rules) have the following properties:
78
78
| --- | --- |
79
79
| Rule name | The name of your rule. The name must begin with a letter, and can contain only letters, numbers, underscores, and dashes. |
80
80
| Domain name | The dot-terminated DNS namespace where your rule applies. The namespace must have either zero labels (for wildcard) or between 2 and 34 labels. For example, `contoso.com.` has two labels. |
81
-
| Destination IP:Port| The forwarding destination. One or more IP addresses and ports of DNS servers that will be used to resolve DNS queries in the specified namespace. |
81
+
| Destination IP:Port| The forwarding destination. One or more IP addresses and ports of DNS servers that are used to resolve DNS queries in the specified namespace. |
82
82
| Rule state | The rule state: Enabled or disabled. If a rule is disabled, it's ignored. |
83
83
84
84
If multiple rules are matched, the longest prefix match is used.
@@ -91,19 +91,19 @@ For example, if you have the following rules:
A query for `secure.store.azure.contoso.com`will match the **AzurePrivate** rule for `azure.contoso.com` and also the **Contoso** rule for `contoso.com`, but the **AzurePrivate** rule takes precedence because the prefix `azure.contoso` is longer than `contoso`.
94
+
A query for `secure.store.azure.contoso.com`matches the **AzurePrivate** rule for `azure.contoso.com` and also the **Contoso** rule for `contoso.com`, but the **AzurePrivate** rule takes precedence because the prefix `azure.contoso` is longer than `contoso`.
95
95
96
96
> [!IMPORTANT]
97
97
> If a rule is present in the ruleset that has as its destination a private resolver inbound endpoint, do not link the ruleset to the VNet where the inbound endpoint is provisioned. This configuration can cause DNS resolution loops. For example: In the previous scenario, no ruleset link should be added to `myeastvnet` because the inbound endpoint at `10.10.0.4` is provisioned in `myeastvnet` and a rule is present that resolves `azure.contoso.com` using the inbound endpoint.
98
98
99
99
#### Rule processing
100
100
101
-
- If multiple DNS servers are entered as the destination for a rule, the first IP address that is entered will be used unless it doesn't respond. An exponential backoff algorithm is used to determine whether or not a destination IP address is responsive. Destination addresses that are marked as unresponsive are not used for 30 minutes.
102
-
- Certain domains will ignore a wildcard rule for DNS resolution, because they are reserved for Azure services. See [Azure services DNS zone configuration](../private-link/private-endpoint-dns.md#azure-services-dns-zone-configuration) for a list of domains that are reserved. The two-label DNS names listed in this article (ex: windows.net, azure.com, azure.net, windowsazure.us) are reserved for Azure services.
101
+
- If multiple DNS servers are entered as the destination for a rule, the first IP address that is entered is used unless it doesn't respond. An exponential backoff algorithm is used to determine whether or not a destination IP address is responsive. Destination addresses that are marked as unresponsive aren't used for 30 minutes.
102
+
- Certain domains are ignored when using a wildcard rule for DNS resolution, because they are reserved for Azure services. See [Azure services DNS zone configuration](../private-link/private-endpoint-dns.md#azure-services-dns-zone-configuration) for a list of domains that are reserved. The two-label DNS names listed in this article (ex: windows.net, azure.com, azure.net, windowsazure.us) are reserved for Azure services.
103
103
104
104
> [!IMPORTANT]
105
105
> - You can't enter the Azure DNS IP address of 168.63.129.16 as the destination IP address for a rule. Attempting to add this IP address will output the error: **Exception while making add request for rule**.
106
-
> - Do not use the private resolver's inbound endpoint IP address as a forwarding destination for zones that are not linked to the virtual network where the private resolver is provisioned.
106
+
> - Do not use the private resolver's inbound endpoint IP address as a forwarding destination for zones that aren't linked to the virtual network where the private resolver is provisioned.
0 commit comments