Skip to content

Commit ecedec9

Browse files
committed
Merge branch 'master' of https://github.com/MicrosoftDocs/azure-docs-pr into asc-melvyn-test
2 parents 91b52d0 + 601490e commit ecedec9

File tree

6 files changed

+18
-14
lines changed

6 files changed

+18
-14
lines changed

.openpublishing.redirection.json

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -26194,11 +26194,6 @@
2619426194
"redirect_url": "/azure/security-center/security-center-features-retirement-july2019#custom-alert-rules-preview",
2619526195
"redirect_document_id": false
2619626196
},
26197-
{
26198-
"source_path": "articles/security-center/security-center-threat-intel.md",
26199-
"redirect_url": "/azure/security-center/security-center-features-retirement-july2019#menu_securityeventsmap",
26200-
"redirect_document_id": false
26201-
},
2620226197
{
2620326198
"source_path": "articles/virtual-network/virtual-network-deploy-multinic-arm-cli.md",
2620426199
"redirect_url": "/azure/virtual-machines/linux/multiple-nics",

articles/active-directory/conditional-access/howto-conditional-access-policy-block-legacy.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ Due to the increased risk associated with legacy authentication protocols, Micro
2121

2222
## Create a Conditional Access policy
2323

24-
The following steps will help create a Conditional Access policy to require those assigned administrative roles to perform multi-factor authentication.
24+
The following steps will help create a Conditional Access policy to block legacy authentication requests.
2525

2626
1. Sign in to the **Azure portal** as a global administrator, security administrator, or Conditional Access administrator.
2727
1. Browse to **Azure Active Directory** > **Conditional Access**.

articles/aks/security-hardened-vm-host-image.md

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -73,8 +73,6 @@ AKS-Engine does not promote or adhere to any specific security standard at this
7373
|5.4.4 |Ensure default user umask is 027 or more restrictive |
7474
|5.6 |Ensure access to the su command is restricted|
7575

76-
(*) Must be enabled. See the cluster definition [documentation](https://github.com/Azure/aks-engine/blob/master/docs/topics/clusterdefinitions.md).
77-
7876
## Additional notes
7977

8078
* To further reduce the attack surface area, some unnecessary kernel module drivers have been disabled in the OS.

articles/machine-learning/service/how-to-create-register-datasets.md

Lines changed: 13 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ To create and work with datasets, you need:
4343

4444
Datasets are categorized into two types based on how users consume them in training.
4545

46-
* [TabularDataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) represents data in a tabular format by parsing the provided file or list of files. This provides you with the ability to materialize the data into a pandas DataFrame. A `TabularDataset` object can be created from csv, tsv, parquet files, SQL query results etc. For a complete list, please visit our [documentation](https://aka.ms/tabulardataset-api-reference).
46+
* [TabularDataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py) represents data in a tabular format by parsing the provided file or list of files. This provides you with the ability to materialize the data into a pandas or spark DataFrame. A `TabularDataset` object can be created from csv, tsv, parquet files, SQL query results etc. For a complete list, please visit our [documentation](https://aka.ms/tabulardataset-api-reference).
4747

4848
* [FileDataset](https://docs.microsoft.com/python/api/azureml-core/azureml.data.file_dataset.filedataset?view=azure-ml-py) references single or multiple files in your datastores or public urls. This provides you with the ability to download or mount the files to your compute. The files can be of any format, which enables a wider range of machine learning scenarios including deep learning.
4949

@@ -106,6 +106,16 @@ titanic_ds.take(3).to_pandas_dataframe()
106106
1|2|1|1|Cumings, Mrs. John Bradley (Florence Briggs Th...|female|38.0|1|0|PC 17599|71.2833|C85|C
107107
2|3|1|3|Heikkinen, Miss. Laina|female|26.0|0|0|STON/O2. 3101282|7.9250||S
108108

109+
Use the [`from_sql_query()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.dataset_factory.tabulardatasetfactory?view=azure-ml-py#from-sql-query-query--validate-true--set-column-types-none-) method on `TabularDatasetFactory` class to read from Azure SQL Database.
110+
111+
```Python
112+
113+
from azureml.core import Dataset, Datastore
114+
115+
# create tabular dataset from a SQL database in datastore
116+
sql_datastore = Datastore.get(workspace, 'mssql')
117+
sql_ds = Dataset.Tabular.from_sql_query((sql_datastore, 'SELECT * FROM my_table'))
118+
```
109119
Use the [`with_timestamp_columns()`](https://docs.microsoft.com/python/api/azureml-core/azureml.data.tabulardataset?view=azure-ml-py#with-timestamp-columns-fine-grain-timestamp--coarse-grain-timestamp-none--validate-false-) method on `TabularDataset` class to enable easy and efficient filtering by time. More examples and details can be found [here](http://aka.ms/azureml-tsd-notebook).
110120

111121
```Python
@@ -193,7 +203,7 @@ titanic_ds = titanic_ds.register(workspace = workspace,
193203
```
194204

195205

196-
## Access your data during training
206+
## Access datasets in your script
197207

198208
Registered datasets are accessible locally and remotely on compute clusters like the Azure Machine Learning compute. To access your registered Dataset across experiments, use the following code to get your workspace and registered dataset by name. The [`get_by_name()`](https://docs.microsoft.com/python/api/azureml-core/azureml.core.dataset.dataset?view=azure-ml-py#get-by-name-workspace--name--version--latest--) method on the `Dataset` class by default returns the latest version of the dataset registered with the workspace.
199209

@@ -216,5 +226,6 @@ df = titanic_ds.to_pandas_dataframe()
216226

217227
## Next steps
218228

229+
* Learn [how to train with datasets](how-to-train-with-datasets.md)
219230
* Use automated machine learning to [train with TabularDatasets](https://aka.ms/automl-dataset).
220231
* For more examples of training with datasets, see the [sample notebooks](https://aka.ms/dataset-tutorial).

articles/virtual-machines/linux/openshift-prerequisites.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ Create service principal:
113113
scope=`az group show --name openshiftrg --query id`
114114
az ad sp create-for-rbac --name openshiftsp \
115115
--role Contributor --password {Strong Password} \
116-
--scopes $scope
116+
--scopes $scope \
117117
```
118118
If you're using Windows, execute ```az group show --name openshiftrg --query id``` and use the output in place of $scope.
119119

@@ -170,4 +170,4 @@ This article covered the following topics:
170170
Next, deploy an OpenShift cluster:
171171

172172
- [Deploy OpenShift Container Platform](./openshift-container-platform.md)
173-
- [Deploy OpenShift Container Platform Self-Managed Marketplace Offer](./openshift-marketplace-self-managed.md)
173+
- [Deploy OpenShift Container Platform Self-Managed Marketplace Offer](./openshift-marketplace-self-managed.md)

includes/azure-monitor-limits-alerts.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@ ms.custom: "include file"
1313
| Resource | Default limit | Maximum limit |
1414
| --- | --- | --- |
1515
| Metric alerts (classic) |100 active alert rules per subscription. | Call support. |
16-
| Metric alerts |1000 active alert rules per subscription (in public clouds) and 100 active alert rules per subscription in Azure China 21Vianet and Azure Government. | Call support. |
16+
| Metric alerts |1000 active alert rules per subscription in Azure public, Azure China 21Vianet and Azure Government clouds. | Call support. |
1717
| Activity log alerts | 100 active alert rules per subscription. | Same as default. |
1818
| Log alerts | 512 | Call support. |
1919
| Action groups |2,000 action groups per subscription. | Call support. |
20-
| Autoscale settings |100 per region per subscription. | Same as default. |
20+
| Autoscale settings |100 per region per subscription. | Same as default. |

0 commit comments

Comments
 (0)