Skip to content

Commit ed3a241

Browse files
committed
Standardize tab name
1 parent d881dde commit ed3a241

17 files changed

+63
-63
lines changed

articles/machine-learning/how-to-configure-network-isolation-with-v2.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ After the parameter has been implemented, the default value of the flag depends
8989
9090
To update v1_legacy_mode, use the following steps:
9191

92-
# [Python](#tab/python)
92+
# [Python SDK](#tab/python)
9393

9494
To disable v1_legacy_mode, use [Workspace.update](/python/api/azureml-core/azureml.core.workspace(class)#update-friendly-name-none--description-none--tags-none--image-build-compute-none--service-managed-resources-settings-none--primary-user-assigned-identity-none--allow-public-access-when-behind-vnet-none-) and set `v1_legacy_mode=false`.
9595

articles/machine-learning/how-to-create-attach-compute-cluster.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -84,7 +84,7 @@ The dedicated cores per region per VM family quota and total regional quota, whi
8484

8585
The compute autoscales down to zero nodes when it isn't used. Dedicated VMs are created to run your jobs as needed.
8686

87-
# [Python](#tab/python)
87+
# [Python SDK](#tab/python)
8888

8989
To create a persistent Azure Machine Learning Compute resource in Python, specify the **vm_size** and **max_nodes** properties. Azure Machine Learning then uses smart defaults for the other properties.
9090

@@ -175,7 +175,7 @@ You may also choose to use [low-priority VMs](how-to-manage-optimize-cost.md#low
175175

176176
Use any of these ways to specify a low-priority VM:
177177

178-
# [Python](#tab/python)
178+
# [Python SDK](#tab/python)
179179

180180
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
181181

@@ -209,7 +209,7 @@ In the studio, choose **Low Priority** when you create a VM.
209209

210210
[!INCLUDE [aml-clone-in-azure-notebook](../../includes/aml-managed-identity-intro.md)]
211211

212-
# [Python](#tab/python)
212+
# [Python SDK](#tab/python)
213213

214214
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
215215

articles/machine-learning/how-to-create-manage-compute-instance.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ The dedicated cores per region per VM family quota and total regional quota, whi
6060

6161
The following example demonstrates how to create a compute instance:
6262

63-
# [Python](#tab/python)
63+
# [Python SDK](#tab/python)
6464

6565
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
6666

@@ -428,7 +428,7 @@ You can [create a schedule](#schedule-automatic-start-and-stop-preview) for the
428428
> [!TIP]
429429
> The compute instance has 120GB OS disk. If you run out of disk space, [use the terminal](how-to-access-terminal.md) to clear at least 1-2 GB before you stop or restart the compute instance. Please do not stop the compute instance by issuing sudo shutdown from the terminal. The temp disk size on compute instance depends on the VM size chosen and is mounted on /mnt.
430430
431-
# [Python](#tab/python)
431+
# [Python SDK](#tab/python)
432432

433433
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
434434

articles/machine-learning/how-to-manage-workspace.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ As your needs change or requirements for automation increase you can also manage
3737

3838
You can create a workspace [directly in Azure Machine Learning studio](./quickstart-create-resources.md#create-the-workspace), with limited options available. Or use one of the methods below for more control of options.
3939

40-
# [Python](#tab/python)
40+
# [Python SDK](#tab/python)
4141

4242
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
4343

@@ -168,7 +168,7 @@ If you have problems in accessing your subscription, see [Set up authentication
168168
> For more information on using a private endpoint and virtual network with your workspace, see [Network isolation and privacy](how-to-network-security-overview.md).
169169
170170

171-
# [Python](#tab/python)
171+
# [Python SDK](#tab/python)
172172

173173
The Azure Machine Learning Python SDK provides the [PrivateEndpointConfig](/python/api/azureml-core/azureml.core.privateendpointconfig) class, which can be used with [Workspace.create()](/python/api/azureml-core/azureml.core.workspace.workspace#create-name--auth-none--subscription-id-none--resource-group-none--location-none--create-resource-group-true--sku--basic---tags-none--friendly-name-none--storage-account-none--key-vault-none--app-insights-none--container-registry-none--adb-workspace-none--cmk-keyvault-none--resource-cmk-uri-none--hbi-workspace-false--default-cpu-compute-target-none--default-gpu-compute-target-none--private-endpoint-config-none--private-endpoint-auto-approval-true--exist-ok-false--show-output-true-) to create a workspace with a private endpoint. This class requires an existing virtual network.
174174

@@ -212,7 +212,7 @@ Use the following steps to provide your own key:
212212
> * Create and configure an Azure Key Vault
213213
> * Generate a key
214214
215-
# [Python](#tab/python)
215+
# [Python SDK](#tab/python)
216216

217217
Use `cmk_keyvault` and `resource_cmk_uri` to specify the customer managed key.
218218

@@ -245,7 +245,7 @@ from azureml.core import Workspace
245245

246246
If you will be creating a [compute instance](quickstart-create-resources.md), skip this step. The compute instance has already created a copy of this file for you.
247247

248-
# [Python](#tab/python)
248+
# [Python SDK](#tab/python)
249249

250250
If you plan to use code on your local environment that references this workspace (`ws`), write the configuration file:
251251

@@ -303,7 +303,7 @@ If you have problems in accessing your subscription, see [Set up authentication
303303

304304
See a list of all the workspaces you can use.
305305

306-
# [Python](#tab/python)
306+
# [Python SDK](#tab/python)
307307

308308
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
309309

@@ -342,7 +342,7 @@ When you no longer need a workspace, delete it.
342342

343343
If you accidentally deleted your workspace, you may still be able to retrieve your notebooks. For details, see [Failover for business continuity and disaster recovery](./how-to-high-availability-machine-learning.md#workspace-deletion).
344344

345-
# [Python](#tab/python)
345+
# [Python SDK](#tab/python)
346346

347347
[!INCLUDE [sdk v1](../../includes/machine-learning-sdk-v1.md)]
348348

articles/machine-learning/how-to-responsible-ai-dashboard-sdk-cli.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ The constructor component has a single output named `rai_insights_dashboard`. Th
149149
      categorical_column_names: '["location", "style", "job title", "OS", "Employer", "IDE", "Programming language"]'
150150
```
151151

152-
# [Python](#tab/python)
152+
# [Python SDK](#tab/python)
153153

154154
First load the component:
155155

@@ -252,7 +252,7 @@ This component has a single output port, which can be connected to one of the `i
252252
      treatment_features: `["Number of GitHub repos contributed to", "YOE"]'
253253
```
254254
255-
# [Python](#tab/python)
255+
# [Python SDK](#tab/python)
256256
257257
```python
258258
#First load the component:
@@ -299,7 +299,7 @@ This component has a single output port, which can be connected to one of the `i
299299
```
300300
301301
302-
# [Python](#tab/python)
302+
# [Python SDK](#tab/python)
303303
304304
```python
305305
#First load the component:
@@ -340,7 +340,7 @@ This component has a single output port, which can be connected to one of the `i
340340
      filter_features: `["style", "Employer"]'
341341
```
342342
343-
# [Python](#tab/python)
343+
# [Python SDK](#tab/python)
344344
345345
```python
346346
#First load the component:
@@ -375,7 +375,7 @@ This component has a single output port, which can be connected to one of the `i
375375
```
376376
377377
378-
# [Python](#tab/python)
378+
# [Python SDK](#tab/python)
379379
380380
```python
381381
#First load the component:
@@ -417,7 +417,7 @@ There are two output ports:
417417
```
418418
419419
420-
# [Python](#tab/python)
420+
# [Python SDK](#tab/python)
421421
422422
```python
423423
#First load the component:
@@ -454,7 +454,7 @@ This component produces information about a registered model, which can be consu
454454
      model_id: my_model_name:12
455455
```
456456
457-
# [Python](#tab/python)
457+
# [Python SDK](#tab/python)
458458
459459
```python
460460
#First load the component:
@@ -482,7 +482,7 @@ This component converts the tabular dataset named in its sole input parameter in
482482
```
483483
484484
485-
# [Python](#tab/python)
485+
# [Python SDK](#tab/python)
486486
487487
```python
488488
#First load the component:

articles/machine-learning/how-to-schedule-pipeline-job.md

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ In this article, you'll learn how to programmatically schedule a pipeline to run
3434

3535
- Create an Azure Machine Learning workspace if you don't have one. For workspace creation, see [Install, set up, and use the CLI (v2)](how-to-configure-cli.md).
3636

37-
# [Python](#tab/python)
37+
# [Python SDK](#tab/python)
3838

3939
- Create an Azure Machine Learning workspace if you don't have one.
4040
- The [Azure Machine Learning SDK v2 for Python](/python/api/overview/azure/ml/installv2).
@@ -63,7 +63,7 @@ You can schedule a pipeline job yaml in local or an existing pipeline job in wor
6363

6464
List continues below.
6565

66-
# [Python](#tab/python)
66+
# [Python SDK](#tab/python)
6767

6868
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
6969

@@ -109,7 +109,7 @@ The `trigger` section defines the schedule details and contains following proper
109109

110110
List continues below.
111111

112-
# [Python](#tab/python)
112+
# [Python SDK](#tab/python)
113113

114114
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
115115

@@ -160,7 +160,7 @@ When defining a schedule using an existing job, you can change the runtime setti
160160

161161
:::code language="yaml" source="~/azureml-examples-main/cli/schedules/cron-with-settings-job-schedule.yml":::
162162

163-
# [Python](#tab/python)
163+
# [Python SDK](#tab/python)
164164

165165
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
166166

@@ -198,7 +198,7 @@ After you create the schedule yaml, you can use the following command to create
198198

199199
:::code language="azurecli" source="~/azureml-examples-main/cli/schedules/schedule.sh" ID="create_schedule":::
200200

201-
# [Python](#tab/python)
201+
# [Python SDK](#tab/python)
202202

203203
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
204204

@@ -214,7 +214,7 @@ After you create the schedule yaml, you can use the following command to create
214214

215215
:::code language="azurecli" source="~/azureml-examples-main/cli/schedules/schedule.sh" ID="show_schedule":::
216216

217-
# [Python](#tab/python)
217+
# [Python SDK](#tab/python)
218218

219219
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
220220

@@ -230,7 +230,7 @@ After you create the schedule yaml, you can use the following command to create
230230

231231
:::code language="azurecli" source="~/azureml-examples-main/cli/schedules/schedule.sh" ID="list_schedule":::
232232

233-
# [Python](#tab/python)
233+
# [Python SDK](#tab/python)
234234

235235
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
236236

@@ -246,7 +246,7 @@ After you create the schedule yaml, you can use the following command to create
246246

247247
:::code language="azurecli" source="~/azureml-examples-main/cli/schedules/schedule.sh" ID="update_schedule":::
248248

249-
# [Python](#tab/python)
249+
# [Python SDK](#tab/python)
250250

251251
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
252252

@@ -262,7 +262,7 @@ After you create the schedule yaml, you can use the following command to create
262262

263263
:::code language="azurecli" source="~/azureml-examples-main/cli/schedules/schedule.sh" ID="disable_schedule":::
264264

265-
# [Python](#tab/python)
265+
# [Python SDK](#tab/python)
266266

267267
[!notebook-python[] (~/azureml-examples-main/sdk/schedules/job-schedule.ipynb?name=disable_schedule)]
268268

@@ -276,7 +276,7 @@ After you create the schedule yaml, you can use the following command to create
276276

277277
:::code language="azurecli" source="~/azureml-examples-main/cli/schedules/schedule.sh" ID="enable_schedule":::
278278

279-
# [Python](#tab/python)
279+
# [Python SDK](#tab/python)
280280

281281
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
282282

@@ -312,7 +312,7 @@ You can also apply [Azure CLI JMESPath query](/cli/azure/query-azure-cli) to que
312312

313313
:::code language="azurecli" source="~/azureml-examples-main/cli/schedules/schedule.sh" ID="delete_schedule":::
314314

315-
# [Python](#tab/python)
315+
# [Python SDK](#tab/python)
316316

317317
[!INCLUDE [sdk v2](../../includes/machine-learning-sdk-v2.md)]
318318

articles/machine-learning/how-to-use-managed-identities.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -110,7 +110,7 @@ If you don't bring your own ACR, Azure Machine Learning service will create one
110110
111111
To access the workspace ACR, create machine learning compute cluster with system-assigned managed identity enabled. You can enable the identity from Azure portal or Studio when creating compute, or from Azure CLI using the below. For more information, see [using managed identity with compute clusters](how-to-create-attach-compute-cluster.md#set-up-managed-identity).
112112
113-
# [Python](#tab/python)
113+
# [Python SDK](#tab/python)
114114
115115
When creating a compute cluster with the [AmlComputeProvisioningConfiguration](/python/api/azureml-core/azureml.core.compute.amlcompute.amlcomputeprovisioningconfiguration), use the `identity_type` parameter to set the managed identity type.
116116

articles/machine-learning/v1/how-to-configure-private-link.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ Use one of the following methods to create a workspace with a private endpoint.
6565
> [!TIP]
6666
> If you'd like to create a workspace, private endpoint, and virtual network at the same time, see [Use an Azure Resource Manager template to create a workspace for Azure Machine Learning](../how-to-create-workspace-template.md).
6767
68-
# [Python](#tab/python)
68+
# [Python SDK](#tab/python)
6969

7070
The Azure Machine Learning Python SDK provides the [PrivateEndpointConfig](/python/api/azureml-core/azureml.core.privateendpointconfig) class, which can be used with [Workspace.create()](/python/api/azureml-core/azureml.core.workspace.workspace#create-name--auth-none--subscription-id-none--resource-group-none--location-none--create-resource-group-true--sku--basic---tags-none--friendly-name-none--storage-account-none--key-vault-none--app-insights-none--container-registry-none--adb-workspace-none--cmk-keyvault-none--resource-cmk-uri-none--hbi-workspace-false--default-cpu-compute-target-none--default-gpu-compute-target-none--private-endpoint-config-none--private-endpoint-auto-approval-true--exist-ok-false--show-output-true-) to create a workspace with a private endpoint. This class requires an existing virtual network.
7171

@@ -156,7 +156,7 @@ You can remove one or all private endpoints for a workspace. Removing a private
156156
157157
To remove a private endpoint, use the following information:
158158

159-
# [Python](#tab/python)
159+
# [Python SDK](#tab/python)
160160

161161
To remove a private endpoint, use [Workspace.delete_private_endpoint_connection](/python/api/azureml-core/azureml.core.workspace(class)#delete-private-endpoint-connection-private-endpoint-connection-name-). The following example demonstrates how to remove a private endpoint:
162162

@@ -201,7 +201,7 @@ To enable public access, use the following steps:
201201
>
202202
> Microsoft recommends using `public_network_access` to enable or disable public access to a workspace.
203203
204-
# [Python](#tab/python)
204+
# [Python SDK](#tab/python)
205205

206206
To enable public access, use [Workspace.update](/python/api/azureml-core/azureml.core.workspace(class)#update-friendly-name-none--description-none--tags-none--image-build-compute-none--service-managed-resources-settings-none--primary-user-assigned-identity-none--allow-public-access-when-behind-vnet-none-) and set `allow_public_access_when_behind_vnet=True`.
207207

articles/machine-learning/v1/how-to-consume-web-service.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ The [azureml.core.Webservice](/python/api/azureml-core/azureml.core.webservice%2
4545

4646
There are several ways to retrieve this information for deployed web services:
4747

48-
# [Python](#tab/python)
48+
# [Python SDK](#tab/python)
4949

5050
[!INCLUDE [sdk v1](../../../includes/machine-learning-sdk-v1.md)]
5151

articles/machine-learning/v1/how-to-create-attach-kubernetes.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -162,7 +162,7 @@ Creating or attaching an AKS cluster is a one time process for your workspace. Y
162162

163163
The following example demonstrates how to create a new AKS cluster using the SDK and CLI:
164164

165-
# [Python](#tab/python)
165+
# [Python SDK](#tab/python)
166166

167167
[!INCLUDE [sdk v1](../../../includes/machine-learning-sdk-v1.md)]
168168

@@ -238,7 +238,7 @@ For more information on creating an AKS cluster using the Azure CLI or portal, s
238238

239239
The following example demonstrates how to attach an existing AKS cluster to your workspace:
240240

241-
# [Python](#tab/python)
241+
# [Python SDK](#tab/python)
242242

243243
[!INCLUDE [sdk v1](../../../includes/machine-learning-sdk-v1.md)]
244244

@@ -415,7 +415,7 @@ To detach a cluster from your workspace, use one of the following methods:
415415
> [!WARNING]
416416
> Using the Azure Machine Learning studio, SDK, or the Azure CLI extension for machine learning to detach an AKS cluster **does not delete the AKS cluster**. To delete the cluster, see [Use the Azure CLI with AKS](../../aks/learn/quick-kubernetes-deploy-cli.md#delete-the-cluster).
417417
418-
# [Python](#tab/python)
418+
# [Python SDK](#tab/python)
419419

420420
[!INCLUDE [sdk v1](../../../includes/machine-learning-sdk-v1.md)]
421421

0 commit comments

Comments
 (0)